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Introduction

il

The IMSL Fortran Numerical Library
The IMSL Fortran Numerical Library consists of two separate but coordinated Libraries that allow easy user
access. These Libraries are organized as follows:
¢ MATH/LIBRARY general applied mathematics and special functions
The User’s Guide for IMSL MATH/LIBRARY has two parts:
a. MATH LIBRARY
b. MATH LIBRARY Special Functions
& STAT LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines for linear solv-
ers and eigensystems are also available for complex and complex-double precision arithmetic. The same user
interface is found on the many hardware versions that span the range from personal computer to
supercomputer.

This library is the result of a merging of the products: IMSL Fortran Numerical Libraries and IMSL Fortran 90
Library.

User Background

Vendor Supplied Libraries Usage

The IMSL Fortran Numerical Library contains functions which may take advantage of functions in vendor
supplied libraries such as Intel’s® Math Kernel Library (MKL) or Sun’s High Performance Library. Functions
in the vendor supplied libraries are finely tuned for performance to take full advantage of the environment
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for which they are supplied. For these functions, the user of the IMSL Fortran Numerical Library has the
option of linking to code which is based on either the IMSL legacy functions or the functions in the vendor
supplied library. The following icon in the function documentation alerts the reader when this is the case:

HEGH
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Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in
the online README file of the product distribution.

Getting Started

The IMSL STAT LIBRARY is a collection of FORTRAN subroutines and functions useful in research and sta-
tistical analysis. Each routine is designed and documented to be used in research activities as well as by
technical specialists.

To use any of these routines, you must write a program in FORTRAN (or possibly some other language) to
call the STAT LIBRARY routine. Each routine conforms to established conventions in programming and doc-
umentation. We give first priority in development to efficient algorithms, clear documentation, and accurate
results. The uniform design of the routines makes it easy to use more than one routine in a given application.
Also, you will find that the design consistency enables you to apply your experience with one

STAT LIBRARY routine to all other IMSL routines that you use.

Finding the Right Routine

The STAT LIBRARY is organized into chapters; each chapter contains routines with similar computational or
analytical capabilities. To locate the right routine for a given problem, you may use either the table of con-
tents located in each chapter introduction, or one of the indexes at the end of this manual.

Often the quickest way to use the STAT LIBRARY is to find an example similar to your problem and then to
mimic the example. Each routine document has at least one example demonstrating its application. The
example for a routine may be created simply for illustration, it may be from a textbook (with reference to the
source) or it may be from the statistical literature, in which case IMSL routine GDATA retrieves the data set.
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Organization of the Documentation

This manual contains a concise description of each routine, with at least one demonstrated example of each
routine, including sample input and results. You will find all information pertaining to the STAT LIBRARY in
this manual. Moreover, all information pertaining to a particular routine is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines included in
the chapter. Documentation of the routines consists of the following information:

¢ IMSL Routine’s Generic Name

o Purpose: a statement of the purpose of the routine. If the routine is a function rather than a
subroutine the purpose statement will reflect this fact.

o Function Return Value: a description of the return value (for functions only).

¢ Required Arguments: a description of the required arguments in the order of their occurrence.
Input arguments usually occur first, followed by input/output arguments, with output
arguments described last. Futhermore, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this argument; cannot
be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input or output. See individ-
ual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine returns output
through this argument.

# Optional Arguments: a description of the optional arguments in the order of their occurrence.
& Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.

o Fortran 77 Style Interfaces: an optional section, which describes Fortran 77 style interfaces, is
supplied for backwards compatibility with previous versions of the Library.

# Description: a description of the algorithm and references to detailed information. In many
cases, other IMSL routines with similar or complementary functions are noted.

¢ Comments: details pertaining to code usage.

& Programming notes: an optional section that contains programming details not covered
elsewhere.

# Example: at least one application of this routine showing input and required dimension and
type statements.

# Output: results from the example(s). Note that unique solutions may differ from platform to
platform.

# Additional Examples: an optional section with additional applications of this routine showing
input and required dimension and type statements.
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Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available in both a single precision
and a double precision version, with names of the two versions sharing a common root. The root name is also
the generic interface name. The name of the double precision specific version begins with a “D_.” The single
precision specific version begins with an “S_". For example, the following pairs are precision specific names
of routines in the two different precisions: S_UVSTA/D_UVSTA (the root is “UVSTA ,” for “Basic Univariate
Statistics”) and S_TWFRQ/D_TWFRQ (the root is “TWFRQ,” for “Two-Way Frequency Table”). Of course the
generic name can be used as an entry point for all precisions supported.

Except when expressly stated otherwise, the names of the variables in the argument lists follow the
FORTRAN default type for integer and floating point. In other words, a variable whose name begins with
one of the letters “I” through “N” is of type INTEGER, and otherwise is of type REAL or DOUBLE PRECISION,
depending on the precision of the routine.

An assumed size array with more than one dimension that is used as a FORTRAN argument can have an
assumed-size declarator for the last dimension only. In the MATH /LIBRARY routines, the information about
the first dimension is passed by a variable with the prefix “LD” and with the array name as the root. For
example, the argument LDA contains the leading dimension of array A. In most cases, information about the
dimensions of arrays is obtained from the array through the use of Fortran 90’s size function. Therefore,
arguments carrying this type of information are usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the STAT LIBRARY.
For example, in the routines for random number generation, NR denotes the number of random numbers to
be generated, and R or IR denotes the array that stores the numbers.

When writing programs accessing the STAT LIBRARY, the user should choose FORTRAN names that do not
conflict with names of IMSL subroutines, functions, or named common blocks. The careful user can avoid
any conflicts with IMSL names if, in choosing names, the following rules are observed:

¢ Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the
User’s Manual, nor one of these names preceded byaD,S_,D_,C_,0or Z_.

# Do not choose a name consisting of more than three characters with a numeral in the second or
third position.

For further details, see the section on Reserved Names in the Reference Material section of this manual.

Using Library Subprograms

The documentation for the routines uses the generic name and omits the prefix, and hence the entire suite of
routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this principle,
note the OWFRQ documentation (see Chapter 1, “Basic Statistics”), for tallying observation into a one-way fre-
quency table. A description is provided for just one data type. There are two documented routines in this
subject area: S_OWFRQ and D_OWFRQ.
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These routines constitute single-precision and double-precision versions of the code.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with the rou-
tines. The naming convention for modules joins the suffix “_int” to the generic routine name. Thus, the line
“use OWFRQ_INT” is inserted near the top of any routine that calls the subprogram “OWFRQ”. More inclusive
modules are also available. For example, the module named “imsl_libraries” contains the interface
modules for all routines in the library.

Programming Conventions

In general, the IMSL STAT LIBRARY codes are written so that computations are not affected by underflow,
provided the system (hardware or software) places a zero value in the register. In this case, system error mes-
sages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages indicating
overflow should be examined for programming errors such as incorrect input data, mismatch of argument
types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure of the
algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly. This error-
handling capability provides automatic protection for the user without requiring the user to make any spe-
cific provisions for the treatment of error conditions. See the section on User Errors in the Reference Material
for further details.

Module Usage

Users are required to incorporate a “use” statement near the top of their program for the IMSL routine being
called when writing new code that uses this library. However, legacy code which calls routines in the previ-
ous version of the library without the use of a “use” statement will continue to work as before. Also, code
which employed the “use numerical_libraries” statement from the previous version of the library
will continue to work properly with this version of the library.

Users wishing to update existing programs so as to call other routines from this library should incorporate a
use statement for the specific new routine being called. (Here, the term “new routine” implies any routine in
the library, only “new” to the user’s program.) Use of the more encompassing “ims1_libraries” module
in this case could result in argument mismatches for the “old” routine(s) being called. (This would be caught
by the compiler.)

Users wishing to update existing programs so as to call the new generic versions of the routines must change
their calls to the existing routines so as to match the new calling sequences and use either the routine specific
interface modules or the all encompassing “imsl_libraries” module.
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Programming Tips

It is strongly suggested that users force all program variables to be explicitly typed. This is done by including
the line “IMPLICIT NONE” as close to the first line as possible. Study some of the examples accompanying
an IMSL Fortran Library routine early on. These examples are available online as part of the product.

Each subject routine called or otherwise referenced requires the “use” statement for an interface block
designed for that subject routine. The contents of this interface block are the interfaces to the separate rou-
tines available for that subject. Packaged descriptive names for option numbers that modify documented
optional data or internal parameters might also be provided in the interface block. Although this seems like
an additional complication, many typographical errors are avoided at an early stage in development through
the use of these interface blocks. The “use” statement is required for each routine called in the user’s
program.

However, if one is only using the Fortran 77 interfaces supplied for backwards compatibility then the “use”
statements are not required.

Optional Subprogram Arguments

IMSL Fortran Library routines have required arguments and may have optional arguments. All arguments are
documented for each routine. For example, consider the routine ORDST that determines order statistics. The
required arguments are X, NOS, 0S, and NMISS. The input data for the problem are the X array and NOS, the
number of order statistics; the output is returned in the 0S array. The number of missing values is returned in
NMISS. This routine has as optional arguments NOBS, IOPT, and I0S. If one wishes to calculate a different set
of order statistics than the default (the first NOS order statistics) then the optional argument given by the
“I0PT="keyword should be used in the argument list. See Example 2 of ORDST in Chapter 1, “Basic Statistics”
for an example of this functionality.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES interface mod-
ule includes backwards compatible positional argument interfaces to all routines which existed in the
Fortran 77 version of the Library. Note that it is not necessary to use “use” statements when calling these rou-
tines by themselves. Existing programs which called these routines will continue to work in the same manner
as before.

Error Handling

The routines in the IMSL STAT LIBRARY attempt to detect and report errors and invalid input. Errors are
classified and are assigned a code number. By default, errors of moderate or worse severity result in mes-
sages being automatically printed by the routine. Moreover, errors of worse severity cause program
execution to stop. The severity level as well as the general nature of the error is designated by an “error type”
with numbers from 0 to 5. An error type 0 is no error; types 1 through 5 are progressively more severe. In
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most cases, you need not be concerned with our method of handling errors. For those interested, a complete
description of the error-handling system is given in the Reference Material, which also describes how you
can change the default actions and access the error code numbers.

Printing Results

Several routines in the IMSL STAT LIBRARY have an option for printing results. These routines have an
optional argument, IPRINT, to control the printing. In any routine that allows printing, if IPRINT = 0, (the
default) then no printing is done (except possibly error messages). Some routines allow various amounts of
printing; one value of IPRINT might result in printing only summary statistics, while another value might
cause more detailed statistics or intermediate results to be printed. Other routines in the STAT LIBRARY do
not print any of the results. In all routines, of course, the output is returned in FORTRAN variables, so if the
routine does not do printing, or if you use the default IPRINT value, you can print the results yourself. The
STAT LIBRARY contains some special routines just for printing arrays. For example, WRRRN and WRRRL are
two convenient routines for printing matrices. See Chapter 19, “Ultilities” for detailed descriptions of these
routines.

A commonly used routine in the examples is the IMSL routine UMACH, which retrieves the FORTRAN device
unit number for printing the results. Because this routine obtains device unit numbers, it can be used to redi-
rect the input or output. The section on Machine-Dependent Constants in the Reference Material contains a
description of the routine UMACH.

Shared-Memory Multiprocessors and Thread Safety

HLGH
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The IMSL Fortran Numerical Library allows users to leverage the high-performance technology of shared
memory parallelism (SMP) when their environment supports it. Support for SMP systems within the IMSL
Library is delivered through various means, depending upon the availability of technologies such as
OpenMP, high performance LAPACK and BLAS, and hardware-specific IMSL algorithms. Use of the IMSL
Fortran Numerical Library on SMP systems can be achieved by using the appropriate link environment vari-
able when building your application. Details on the available link environment variables for your
installation of the IMSL Fortran Numerical Library can be found in the online README file of the product
distribution.
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The IMSL Fortran Numerical Library is thread-safe in those environments that support OpenMP. This was
achieved by using OpenMP directives that define global variables located in the code so they are private to
the individual threads. Thread safety allows users to create instances of routines running on multiple threads
and to include any routine in the IMSL Fortran Numerical Library in these threads.

Missing Values

Many of the routines in the IMSL STAT LIBRARY allow the data to contain missing values. These routines
recognize as a missing value the special value referred to as ‘not a number,” or NaN. The actual value is dif-
ferent on different computers, but it can be obtained by reference to the IMSL routines AMACH or DMACH,
described in the Machine-Dependent Constants section of the Reference Material. In routines that allow miss-
ing values, two common arguments are NMISS and NRMISS. The definitions of these arguments vary
somewhat depending on the specific routine. However, in a data structure where the rows represent observa-
tions and the columns represent variables, NRMISS is the number of rows containing missing values and
NMISS is the total number of missing values.

The way that missing values are treated depends on the individual routine, and is described in the documen-
tation for the routine.

Routines that Accumulate Results over Several Calls

Often in statistical analyses, not all of the data are available in computer memory at once. Many of the rou-
tines in the STAT LIBRARY accept a part of the data, accumulate some statistics, and continue accepting data
and accumulating statistics until all of the data have been processed. The routines that allow the data to be
processed a little at a time have an argument called “ID0.”

Using IMSL Fortran Library on Shared-Memory
Multiprocessors

The IMSL Fortran Library allows users to leverage the high-performance technology of shared memory par-
allelism (SMP) when their environment supports it. Support for SMP systems within the IMSL Library is
delivered through various means, depending upon the availability of technologies such as OpenMP, high
performance BLAS, and hardware-specific IMSL algorithms. Use of the IMSL Fortran Library on SMP sys-
tems can be achieved by using the appropriate link environment variable when building your application.
Details on the available link environment variables for your installation of the IMSL Fortran Library can be
found in the online README file of the product distribution.
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This introduction has acquainted you with a few general characteristics of IMSL STAT LIBRARY. If you are
using the STAT LIBRARY at a computer center, the computer center consultant will provide the details neces-
sary to use the IMSL routines on your computer system.
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Usage Notes

Frequency Tabulations

The routines for frequency tabulations accept raw data in the form of vectors or matrices and produce counts.
Two of these routines assume generally that the data are continuous and tally the observations into groups
based on grouping information that the user supplies. Another routine for frequency tabulations assumes
basically that the data are discrete and counts the number of observations with each value. Other analyses of
discrete data or count data can be performed using IMSL routines in Chapter 5, “Categorical and Discrete Data
Analysis.”

Univariate Summary Statistics

The routine UVSTA computes the sample mean, variance, minimum, maximum, and other basic statistics for
each variable in a data set. It also computes confidence intervals for the mean and variance if the sample is
assumed to be from a normal distribution.

Ranks and Order Statistics

The routines for ranks and order statistics accept data from a single sample stored in a vector. Ranks, order
statistics, and sample quantiles form the basis for many nonparametric and robust statistical techniques (see
Conover 1980 and Hoaglin et al. 1983). Letter values, computed by the routine LETTR, are a special set of
order statistics particularly useful in exploratory data analysis (see Hoaglin 1983).

Parametric Estimates and Tests

The routines described in this section compute statistics for simple inferences about the parameters in nor-
mal, binomial, and Poisson distributions. General discussions of estimation techniques for these
distributions can be found in Johnson and Kotz (1969, 1970a, 1970b). The routine UVSTA, for univariate sum-
mary statistics, also computes statistics for simple inferences about the parameters in a single normal
distribution.

Grouped Data

The routine GRPES computes several basic statistics, such as arithmetic means, geometric means, harmonic
means, and moments about the arithmetic mean for grouped data. The second, third, and fourth moments
are computed both with and without Sheppard’s corrections.

Continuous Data in a Table

The routine CSTAT accepts data sets with both classification variables and response variables. The classifica-
tion variables define cells in a table. Within each cell, means and sums of squares are computed for the
response variables. Further analysis of the response variables, in particular, assessment of the effects of the
classification variables, may be performed using the routines described in Chapter 4 on analysis of variance.
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An alternative for two-way tables is median polish, which is more resistant to outliers, but which is more
exploratory. That is, no test is performed to confirm statistically that row and/or column effects are present.
The routine MEDPL in this section performs median polish. (See Tukey, 1977; Velleman and Hoaglin, 1981;
and Emerson and Hoaglin, 1983.) For count data (frequencies), the routines described in Chapter 5: Categorical
and Discrete Data Analysis,” are appropriate for determining the amount of association among the rows and
columns.
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OWFRQ

Tallies observations into a one-way frequency table.

Required Arguments

X — Vector of length NOBS containing the data. (Input)
K — Number of intervals. (Input)
TABLE — Vector of length K containing the counts. (Output)

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (X,1).

IOPT — Tallying option. (Input)
Default: I0PT = 0.

IOPT Action

0 Intervals of equal length, determined from the data, are used. Let XMIN and XMAX be the
minimum and maximum values in X, respectively. Then, TABLE(1) is the tally of obser-
vations less than or equal to XMIN + (XMAX - XMIN)/K, TABLE(2) is the tally of
observations greater than XMIN + (XMAX - XMIN) /K and less than or equal to XMIN + 2 *
(xMAX - XMIN) /K, and so on. TABLE(K) is the tally of observations greater than
XMAX - (XMAX - XMIN)/K.

1 Intervals of equal length are used just as in the case of TOPT = 0, except the upper and
lower bounds are taken as the user supplied variables XxL.0 and XHT, instead of the actual
minimum and maximum in the data. Therefore, the first and the last intervals are semi-
infinite in length. K must be greater than 2.

2 K-1 cutpoints are input in DIV. The tally in TABLE(1) is the number of observations less
than or equal to DIV(1). For I greater than 1 and less than K, the tally in TABLE(T) is the
number of observations greater than DIV(I - 1) and less than or equal to DIV(I). The
tally in TABLE(K) is the number of observations greater than DIV(K - 1). K must be
greater than 1.

3 Class marks are input in DIV and a constant class half-width is input in cLHW. The total
of the elements in TABLE may be less than NOBS. The tally in TABLE(I) is the number of
observations between DIV(T) - CLHW and DIV(I) + CLHW.

XLO —If TOPT = 1, XLO is the lower bound at which to begin forming the class intervals. (Input)
XLO is used only if IOPT = 1.

XHI — If TOPT = 1, XHI is the upper bound to use in forming the class intervals. (Input)
XHI is used only if IOPT = 1.

CLHW — If TOPT = 3, CLHW is the half-width of the class intervals. (Input)
CLHW is not used if TOPT is not equal to 3.
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DIV — Vector of varying length and contents depending on IOPT. (Inputif IOPT= 2 or 3; output if
I0oPT=0o0r1.)
The contents of DIV are in ascending order.

IOPT Contents
0 DIV is of length K containing interval midpoints. (DIV is output.)

1 DIV is of length K containing interval midpoints. Since the first and last intervals are
semi-infinite in length, DIv(1) contains XL.O minus half the interval length, and DIV(K)
contains XHI plus half the interval length. (DIV is output.)

2 DIV is a vector of length K - 1 containing cutpoints. (DIV is input.)

3 DIV is of length K containing classmarks. (DIV is input.)

FORTRAN 90 Interface

Generic: CALL OWFRQ (X, K, TABLE [, ...])
Specific: The specific interface names are S_OWFRQ and D_OWFRQ.

FORTRAN 77 Interface

Single: CALL OWFRQ (NOBS, X, K, IOPT, XLO, XHI, CLHW, DIV, TABLE)
Double: The double precision name is DOWFRQ.
Description

The routine OWFRQ groups numerical data into categories, which can be defined in any of four different ways
as chosen by TOPT. If IOPT = 0, K intervals of equal length are formed between the minimum and maximum
values in the data, and then the data are tallied in these intervals. The midpoints of the intervals are output in
DIV.

If 10PT =1, K - 2 intervals of equal length are formed between XLO and XHI, and then the data are tallied in
these intervals. In this option, there is one group that consists of data less than XI.O and one group of data
greater than XHI. This option is similar to TOPT = 0, except with this option, the midpoints of the classes are
under control of the user. The midpoints of the intervals are output in DIV. The first and last values of DIV,
respectively, contain XLO minus half the class width and XHT plus half the class width.

For TOPT =2 or 3, the intervals need not be equally spaced. If IOPT = 2, the intervals need not be equal in
length. In this case, the intervals are defined by their boundaries, the “cutpoints”, which are input in DIV.
The number of cutpoints is one less than the number of intervals. The first cutpoint defines the upper bound
of the first interval, and the last cutpoint defines the lower bound of the last interval.

If TOPT= 3, the intervals are all of length twice CLHW, and they are centered on the class marks input in DIV.
This option can be used to exclude portions of the data.

The examples use all of these options with the same data set.
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Examples

Example 1

The data for these examples are from Hinkley (1977) and Velleman and Hoaglin (1981). They are the mea-
surements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive
years. In the first example, we set IOPT = 0. This option may be appropriate if we do not know the range of
the data. Notice that the midpoints of the class intervals, output in DIV, are not “pretty” numbers.

USE OWFRQ_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER K, NOBS
PARAMETER (K=10, NOBS=30)

INTEGER NOUT
REAL DIV(K), TABLE(K), X(NOBS)

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

CALL UMACH (2, NOUT)

CALL OWFRQ (X, K, TABLE, DIV=DIV)
WRITE (NOUT,99999) DIV, TABLE

99999 FORMAT (' Midpoints: ', 10F5.2, /, ' Counts: ', 10F5.0)
END
Output
Midpoints: 0.54 0.98 1.43 1.87 2.31 2.76 3.20 3.64 4.09 4.53
Counts: 4. 8. 5. 5. 3. 1. 3. 0. 0. 1.
Example 2

In this example, we set IOPT = 1 and choose XLO and XHTI so that the intervals will be 0.0 to 0.5, 0.5 to 1.0,
and so on. This means that the midpoints of the class intervals, output in DIV, will be 0.25, 0.75, and so on.

USE OWFRQ_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER K, NOBS
PARAMETER (K=10, NOBS=30)

INTEGER IOPT, NOUT
REAL DIV(K), TABLE(K), X(NOBS), XHI, XLO

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
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2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

CALL UMACH (2, NOUT)

IOPT =1
XLO = 0.5
XHI = 4.5

CALL OWFRQ (X, K, TABLE, iopt=iopt, xlo=xlo, xhi=xhi, div=div)
WRITE (NOUT,99999) DIV, TABLE

99999 FORMAT (' Midpoints: ', 10F5.2, /, " Counts: ', 10F5.0)
END

Output

Midpoints: 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
Counts: 2. 7. 6. 6. 4. 2. 2. 0. 0. 1.

Example 3

In this example, we input class boundaries in DIV. We choose the same intervals as in the example above: 0.0
to 0.5, 0.5 to 1.0, and so on. DIV begins with the first cutpoint between classes.

USE OWFRQ_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER K, NOBS
PARAMETER (K=10, NOBS=30)

INTEGER IOPT, NOUT
REAL DIV(K-1), TABLE(K), X(NOBS)

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

DATA DIV/0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5/

CALL UMACH (2, NOUT)
IOPT = 2

CALL OWFRQ (X, K, TABLE, IOPT=IOPT, DIV=DIV)
WRITE (NOUT,99999) DIV, TABLE

99999 FORMAT (' Cutpoints: ', 9F5.1, /, ' Counts: ', 10F5.0)
END
Output
Cutpoints: 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Counts: 2. 7. 6. 6. 4. 2. 2. 0. 0. 1.
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Example 4

In this example, we set TOPT = 3, and set the values in DIV and CLHW so that the intervals will be the same as

in the previous two examples.

USE OWFRQ_TI
USE UMACH_I

IMPLICIT
INTEGER
PARAMETER

INTEGER
REAL

DATA X/0.77
2.20, 3
0.81, 2
2.05/

DATA DIV/O0.
4.75/

CALL UMACH
IOPT = 3
CLHW = 0.25

CALL OWFRQ

NT
NT

NONE
K, NOBS
(K=10, NOBS=30)

IOPT, NOUT
CLHW, DIV (K), TABLE(K), X(NOBS)

, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,

1.43, 3.37,

&

.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,&

25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.

(2, NOUT)

(X, K, TABLE, IOPT=IOPT, CLHW=CLHW, DIV=DIV)
WRITE (NOUT,99999) DIV, TABLE

25, 3.75, 4.25,&

99999 FORMAT (' Class marks: ', 10F5.2, /, ' Counts: ', 10F5.0)
END
Output
Class marks: 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
Counts: 2. 7. 6. 6. 4. 2. 2. 0. 0. 1.
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TWFRQ

Tallies observations into a two-way frequency table.

Required Arguments

X — Vector of length NOBS containing the data for one variable. (Input)

Y — Vector of length NOBS containing the data for the other variable. (Input)
KX — Number of intervals for the variable X. (Input)

KY — Number of intervals for the variable Y. (Input)

TABLE — KX by KY matrix containing the counts. (Output)

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (X,1).

IOPT — Tallying option. (Input)
Default: T0PT = 0.

IOPT Action

0 Intervals of equal lengths for each variable, determined from the data, are used. Let
XMIN and XMAX be the minimum and maximum values in X, respectively, with similar
meanings for YMIN and YMAX. Then, TABLE(1, 1) is the tally of observations with the x
value less than or equal to XMIN + (XMAX - XMIN)/KX, and the Y value less than or equal
to YMIN + (YMAX - YMIN)/KY. The other table entries are determined similarly.

1 Intervals of equal lengths are used just as in the case of T0PT = 0, except the upper and
lower bounds are taken as the user-supplied variables X0, XHI, YLO, and YHT instead of
the actual minima and maxima in the data. Therefore, the first and the last intervals for
both variables are semi-infinite in length. kX and KY must be greater than 2.

2 KX - 1 cutpoints are input in DIVX, and KY - 1 cutpoints are input in DIVY. The tally in
TABLE(1, 1) is the number of observations for which the X value is less than or equal to
DIVX(1), and the Y value is less than or equal to DIVY(1). For I greater than 1 and less
than KX and J greater than 1 and less than Ky, the tally in TABLE(Z, J) is the number of
observations with x greater than DIVX(I - 1) and less than or equal to DIVX(T) and with
v greater than DIVY(J - 1) and less than or equal to DIVY(J). The tally in TABLE(KX, KY)
is the number of observations for which the X value is greater than DIVX(kX - 1) and the
¥ value is greater than DIVY(KY - 1). KX and KY must be greater than 1.

3 Class marks are input in DIVX and DIVY and a constant class half-width are input in
cLHWX and CLHWY. The total of the elements in TABLE may be less than NOBS. The tally in
TABLE(T, J) is the number of observations with X value between DIVX(T) - CLHWX and
DIVX(I) + CLHWX, and with Y value between DIVY(J) - CLHWY and DIVY(J) + CLHWY.

XLO —If IOPT =1, XLO is the lower bound at which to begin forming the class intervals for X. (Input)
XLO is only used if IOPT = 1.

YLO — If TOPT =1, YLO is the lower bound at which to begin forming the class intervals for Y. (Input)
YLO is only used if IOPT = 1.
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XHI — If TOPT = 1, XHI is the upper bound to use in forming the class intervals for X. (Input)
XHI is only used if IOPT = 1.

YHI —If TOPT = 1, is the upper bound to use in forming the class intervals for Y. (Input)
YHI is only used if IOPT = 1.

CLHWX — If TOPT = 3, CLHWX is the half-width of the class intervals for X. (Input)
CLHWX is only used if TOPT = 3.

CLHWY —If IOPT = 3, CLHWY is the half-width of the class intervals for Y. (Input)
CLHWY is only used if TOPT = 3.

DIVX — Vector of varying length and contents depending on IOPT. (Inputif IOPT= 2 or 3; output if
I0PT=0o0r1)
The contents of DIVX are in ascending order.

IOPT Contents
0 DIV is of length KX containing interval midpoints for the X variable. (DIVX is output.)

1 DIV is of length KX containing interval midpoints for the X variable. Since the first and
last intervals are semi-infinite in length, DIVX(1) contains XLO - half the interval length,
and DIV(KX) contains XHI + half the interval length. (DIVX is output.)

2 DIVX is a vector of length kX - 1 containing cutpoints. (DIVX is input.)

3 DIVX is of length KX containing classmarks. (DIVX is input.)

DIVY — Vector of varying length and contents depending on IOPT. (Input if IOPT=2 or 3; output if
I0PT=0o0r1)
The contents of DIVY are in ascending order. See DIVX.

LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDTABL = size (TABLE,1).

FORTRAN 90 Interface

Generic: CALL TWFRQ (X, Y, KX, KY, TABLE [, ...])
Specific: The specific interface names are S_TWFRQ and D_TWFRQ.

FORTRAN 77 Interface

Single: CALL TWFRQ (NOBS, X, Y, KX, KY, IOPT, XLO, YLO, XHI, YHI, CLHWX, CLHWY, DIVX, DIVY,
TABLE, LDTABL)
Double: The double precision name is DTWFRQ.
Description

The routine TWFRQ groups bivariate numerical data into categories, which can be defined in any of four dif-
ferent ways as chosen by TOPT. This routine is very similar to routine OWFRQ for univariate data. If TOPT=0,
KX intervals of equal length are formed for the first variable (in X) between the minimum and maximum val-
ues in X and similarly KY intervals are formed for the second variable (in Y). The data are then tallied in these
intervals. The midpoints of the intervals for the first variable are output in DIVX and those of the second in
DIVY.
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If IOPT =1, K - 2 intervals of equal length are formed between XL0O and XHT for the data in X and likewise
for Y. The data are then tallied in these intervals. In this option, there is one group that consists of data less
than X1.O and one group of data greater than XHI. This option is similar to TOPT = 0, except in this case, the
midpoints of the classes are under control of the user. The midpoints of the intervals are output in DIVX and
DIVY.

For TOPT =2 or 3, the intervals need not be equally spaced. If IOPT = 2, the intervals need not be equal in
length. In this case, the intervals are defined by their boundaries, the “cutpoints”, which are input in DIVX
and DIVY. The number of cutpoints is one less than the number of intervals. The first cutpoint defines the
upper bound of the first interval, and the last cutpoint defines the lower bound of the last interval.

If TOPT = 3, the intervals are all of length twice CLHWX for X and twice CLHWY for Y, and they are centered on
the class marks input in DIVX and DIVY. This option can be used to exclude portions of the data. The exam-
ples use all of these options with the same data set.

Examples

Example 1

The data for X in these examples are the same as those used in the routine for one-way frequency tabulation,
OWFRQ. The data for Y were created by adding small integers to the data in X. In the first example, we set
IOPT = 0. This option may be appropriate if we do not know the range of the data. Notice that the midpoints
of the class intervals, output in DIVX and DIVY, are not “pretty” numbers. Routine WRRRN, (see Chapter 19,
“Utilities”) is used to print the frequencies. This printing routine puts column and row numbers above and to
the left of the matrix being printed. For example, the “4” in the second row and second column of the output
is the first number that represents a frequency. That frequency is the number of occurrences of pairs of obser-
vations in which both values are in the lowest groups.

USE TWFRQ_INT
USE UMACH_INT
USE WRRRN_INT

IMPLICIT NONE
INTEGER KX, KY, LDTABL, NOBS
PARAMETER (KX=5, KY=6, LDTABL=5, NOBS=30)

INTEGER NOUT
REAL DIVX(KX), DIVY(KY), TABLE(LDTABL,KY), X(NOBS), Y (NOBS)

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, &
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59, &
2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90, &
5.05/

CALL UMACH (2, NOUT)

CALL TWFRQ (X, Y, KX, KY, TABLE, DIVX=DIVX, DIVY=DIVY)
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WRITE (NOUT,99999) DIVX, DIVY

99999 FORMAT (' Midpoints for X (Rows): ', 5F5.2, /, ' Midpoints ' &
, 'for Y (Columns): ', 6F5.2)

CALL WRRRN ('Frequencies', TABLE)

END
Output
Midpoints for X (Rows) : 0.76 1.65 2.53 3.42 4.31
Midpoints for Y (Columns): 1.88 2.69 3.51 4.33 5.14 5.96

Frequencies
1 2 3 4 5 6

1 4.000 2.000 4.000 2.000 0.000 0.000
2 0.000 4.000 3.000 2.000 1.000 0.000
3 0.000 0.000 1.000 2.000 0.000 1.000
4 0.000 0.000 0.000 0.000 1.000 2.000
5 0.000 0.000 0.000 0.000 0.000 1.000
Example 2

In this example, we set IOPT = 1 and choose XI.O, XHI, YLO, and YHTI so that the intervals willbe 0 to 1, 1 to 2,
and so on for X, and 1 to 2, 2 to 3, and so on for Y. This means that the midpoints of the class intervals, output
in DIVX and DIVY, will be 0.5, 1.5, 2.5, and so on. The “5” in the third row and fourth column of the printed
output below, (i.e., the second row and the third column of the frequencies TABLE) represents five pairs of
observations with the X value between 1.0 and 2.0 and the Y value between 3.0 and 4.0.

USE TWFRQ_INT
USE UMACH_INT
USE WRRRN_INT

IMPLICIT NONE
INTEGER KX, KY, LDTABL, NOBS
PARAMETER (KX=5, KY=6, LDTABL=5, NOBS=30)

INTEGER IOPT, NOUT
REAL DIVX(KX), DIVY(KY), TABLE(LDTABL,KY), &
X(NOBS), XHI, XLO, Y(NOBS), YHI, YLO

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, &
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,&
2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90, &
5.05/

CALL UMACH (2, NOUT)

IOPT =1

XLO = 1.0
XHI = 4.0
YLO = 2.0
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CALL TWFRQ (X, Y, KX, KY, TABLE, iopt=iopt, xlo=xlo, ylo=ylo, &
xhi=xhi, vyhi=vyhi, divx=divx, divy=divy)
WRITE (NOUT,99999) DIVX, DIVY

99999 FORMAT (' Midpoints for X (Rows) : ', BF5.2, /, ' Midpoints ' &
, 'for Y (Columns): ', 6F5.2)

CALL WRRRN ('Frequencies', TABLE)

END
Output
Midpoints for X (Rows): 0.50 1.50 2.50 3.50 4.50
Midpoints for Y (Columns): 1.50 2.50 3.50 4.50 5.50 6.50

Frequencies
1 2 3 4 5 6

1 3.000 2.000 4.000 0.000 0.000 0.000
2 0.000 5.000 5.000 2.000 0.000 0.000
3 0.000 0.000 1.000 3.000 2.000 0.000
4 0.000 0.000 0.000 0.000 0.000 2.000
5 0.000 0.000 0.000 0.000 1.000 0.000
Example 3

In this example, we input class boundaries in DIVX and DIVY. We choose the same intervals as in the exam-
ple above: 0 to 1, 1 to 2, and so on. DIVX and DIVY begins with the first cutpoint between classes.

USE TWFRQ_INT

USE UMACH_INT

USE WRRRN_INT

IMPLICIT NONE
INTEGER KX, KY, LDTABL, NOBS
PARAMETER (KX=5, KY=6, LDTABL=5, NOBS=30)

INTEGER IOPT, NOUT
REAL DIVX(4), DIVY(5), TABLE(LDTABL,KY), X(NOBS), Y (NOBS)

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, &
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59, &
2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90, &
5.05/

DATA DIVX/1.0, 2.0,

3.0

3.0, 4.0/
DATA DIVY/2.0, , 4.0

, 5.0, 6.0/

CALL UMACH (2, NOUT)
IOPT = 2

CALL TWFRQ (X, Y, KX, KY, TABLE, IOPT=IOPT, DIVX=DIVX, DIVY=DIVY)
WRITE (NOUT,99999) DIVX, DIVY
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99999 FORMAT (' Cutpoints for X (Rows): ', 4F5.2, /, ' Cutpoints ' &

, 'for Y (Columns): ', 5F5.2)

CALL WRRRN ('Frequencies', TABLE)

END
Output
Cutpoints for X (Rows): 1.00 2.00 3.00 4.00
Cutpoints for Y (Columns): 2.00 3.00 4.00 5.00 6.00

Frequencies
1 2 3 4 5 6

1 3.000 2.000 4.000 0.000 0.000 0.000
2 0.000 5.000 5.000 2.000 0.000 0.000
3 0.000 0.000 1.000 3.000 2.000 0.000
4 0.000 0.000 0.000 0.000 0.000 2.000
5 0.000 0.000 0.000 0.000 1.000 0.000
Example 4

In this example, we set IOPT = 3, and set the values in DIVX, DIVY, CLHWX, and CLHWY so that the intervals
will be the same as in the previous two examples.

USE TWFRQ_INT
USE UMACH_INT
USE WRRRN_INT

IMPLICIT NONE
INTEGER KX, KY, LDTABL, NOBS
PARAMETER (KX=5, KY=6, LDTABL=5, NOBS=30)

INTEGER IOPT, NOUT
REAL CLHWX, CLHWY, DIVX(KX), DIVY(KY), TABLE(LDTABL,KY), &
X (NOBS), Y(NOBS)

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

DATA Y/1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, &
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59, &
2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.90, &

5.05/
DATA DIVX/0.5, 1.5, 2.5, 3.5, 4.5/
DATA DIVY/1.5, 2.5, 3.5, 4.5, 5.5, 6.5/

CALL UMACH (2, NOUT)

IOPT = 3
CLHWX = 0.5
CLHWY = 0.5

CALL TWFRQ (X, Y, KX, KY, TABLE, IOPT=IOPT, CLHWX=CLHWX, &
CLHWY=CLHWY, DIVX=DIVX, DIVY=DIVY)
WRITE (NOUT,99999) DIVX, DIVY
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99999 FORMAT (' Class marks for X (Rows): ', ' Class ', &
'marks for Y (Columns): ' 6F5.2)

CALL WRRRN ('Frequencies', TABLE)

END
Output
Class marks for X (Rows): 0.50 1.50 2.50 3.50 4.50
Class marks for Y (Columns): 1.50 2.50 3.50 4.50 5.50 6.50

Frequencies
1 2 3 4 5 6
1 3.000 2.000 4.000 0.000 0.000 0.000
2 0.000 5.000 5.000 2.000 0.000 0.000
3 0.000 0.000 1.000 3.000 2.000 0.000
4 0.000 0.000 0.000 0.000 0.000 2.000
5 0.000 0.000 0.000 0.000 1.000 0.000
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FREQ

Tallies multivariate observations into a multiway frequency table.

Required Arguments
X — NOBS by NCOL matrix containing the data. (Input)

INDCL — Index vector of length NCLVAR containing the column numbers in X that are the classification
variables. (Input)

MAXTAB — An upper bound for the total number of cells in the frequency table. (Input)
This is the product of the number of distinct values taken by all of the classification variables since the
table includes the empty cells.

MAXCL — An upper bound for the sum of the number of distinct values taken by all of the classification
variables. (Input)

NCLVAL — Vector of length NCLVAR containing, in its i-th element, the number of levels or categories of
the i-th classification variable. (Output, if IDO = 1; Input/Output, if IDO = 2.)
Each variable must have more than one level.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + ... + NCLVAL(NCLVAR) containing the values of the
classification variables. (Output, if IDO= 1; input/output, if
IDO =2.)
Since in general the length of CLVAL will not be known in advance, MAXCL is an upper bound for this
length. The first NCLVAL(1) elements of CLVAL contain the values for the first classification variable.
The next NCLVAL(2) contain the values for the second variable. The last NCLVAL(NCLVAR) positions
contain the values for the last classification variable.

TABLE — Vector of length NCLVAL(1) * NCLVAL(2) * ... * NCLVAL(NCLVAR) containing the frequencies in
the cells of the table to be fit. (Output, if IDO = 1; input/output, if IDO = 2) Since, in general, the length
of TABLE will not be known in advance, MAXTAB is an upper bound for this length. Empty cells are
included in TABLE, and each element of TABLE is nonnegative. The cells of TABLE are sequenced so
that the first variable cycles from 1 to NCLVAL(1) one time, the second variable cycles from 1 to
NCLVAL(2) NCLVAL(1) times, and so on, up to the NCLVAR-th variable, which cycles from 1 to
NCLVAL(NCLVAR) most rapidly (NCLVAL(1) * NCLVAL(2) * ... * NCLVAL(NCLVAR - 1) times). That is
to say, the second element of TABLE is the count for the first value for each classification variable
except the last one and the second value of the last classification variable (assuming that variable takes
more than one distinct value).

Optional Arguments

IDO — Processing option. (Input)
Default: IDO = 1.

IDO Action

1 This is the first (or the only) invocation of FREQ for this data set. Initialization and updat-
ing for the data in X are performed.

2 This is an additional invocation of FREQ, and updating for the data in X is performed.

NOBS — Number of observations. (Input)
Default: NOBS = size (X,1).
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NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option. (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the
frequencies.
Default: IFRQ = 0.

NCLVAR — Number of classification variables. (Input)
NCLVAR must be greater than one.
Default: NCLVAR = size (INDCL,1).

FORTRAN 90 Interface

Generic: CALL FREQ (X, INDCL, MAXTAB, MAXCL, NCLVAL, CLVAL, TABLE [, ...])
Specific: The specific interface names are S_FREQ and D_FREQ.

FORTRAN 77 Interface

Single: CALL FREQ (IDO, NOBS, NCOL, X, LDX, IFRQ, NCLVAR, INDCL, MAXTAB, MAXCL, NCLVAL,
CLVAL, TABLE)
Double: The double precision name is DFREQ.
Description

The routine FREQ determines the distinct values in multivariate data and computes frequencies for the data.
The routine accepts the data in the matrix X, but performs computations only for the variables (columns) in X
specified in INDCL. In general, the variables for which frequencies should be computed are discrete; that is,
they should take on a relatively small number of different values. Variables that are continuous can be
grouped first.

The routine OWFRQ or TWFRQ can be used to group variables and determine the frequencies of groups. The
routine FREQ fills the vector CLVAL with the unique values of the variables and tallies the number of unique
values of each variable in the vector NCLVAL. Each combination of one value from each variable forms a cell
in a multiway table. The frequencies of these cells are entered in TABLE so that the first variable cycles
through its values exactly once and the last variable cycles through its values most rapidly. Some cells may
not correspond to any observation in the data; that is, “missing cells” are included and have 0’s in TABLE.

The length of the vectors CLVAL and TABLE depend on the data. The parameters MAXCL and MAXTAB are
used as checks that the arrays sizes are not exceeded.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2EQ/DF2EQ. The reference is

CALL F2EQ (IDO, NOBS, NCOL, X, LDX, IFRQ, NCLVAR, INDCL, MAXTAB, MAXCL,
NCLVAL, CLVAL, TABLE, IWK, WK)
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The additional arguments are as follows:
IWK — Workspace of length NCLVAR.
WK — Workspace of length NCLVAR.
2. Informational errors

Type Code Description

4 1 MAXCL is too small. Increase the length of CLVAL.

4 2 MAXTAB is too small. Increase the length of TABLE.
Example

The data for this example are taken from the examples used in routine TWFRQ, but modified so that the val-
ues of all points within a given interval of Example 2 for TWFRQ are exactly equal to the class mark for that
interval. The results from this example, therefore, are the same as for Example 2 for TWFRQ, except that
TABLE is a vector. (The elements of the vector are sequenced as the columns of the matrix.)

USE FREQ_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER LDX, MAXCL, MAXTAB, NCLVAR, NCOL, J
PARAMETER (LDX=30, MAXCL=15, MAXTAB=40, NCLVAR=2, NCOL=2)

INTEGER I, INDCL(NCLVAR), NCLVAL (NCLVAR), NOUT, &
NVAL1l, NVAL2
REAL CLVAL (MAXCL), TABLE (MAXTAB), X(LDX,NCOL)

DATA X/0.50, 1.50, 0.50, 1.50, 1.50, 1.50, 0.50, 1.50, 3.50, &

2.50, 2.50, 3.50, 1.50, 2.50, 0.50, 1.50, 1.50, 0.50, &
0.50, 0.50, 2.50, 1.50, 1.50, 1.50, 4.50, 2.50, 0.50, &
1.50, 0.50, 2.50, &

1.50, 3.50, 3.50, 2.50, 3.50, 4.50, 1.50, 3.50, 6.50, &
3.50, 4.50, 6.50, 2.50, 4.50, 3.50, 2.50, 3.50, 3.50, &
1.50, 2.50, 5.50, 2.50, 3.50, 4.50, 5.50, 4.50, 3.50, &
2.50, 2.50, 5.50/

CALL UMACH (2, NOUT)
INDCL(1l) = 1
INDCL(2) = 2
CALL FREQ (X, INDCL, MAXTAB, MAXCL, NCLVAL, CLVAL, TABLE)
NVAL1 = NCLVAL (1)
NVAL2 = NCLVAL(2)
WRITE (NOUT,99999) (CLVAL(J),J=NVALl1+1l,NVAL1+NVAL2), &
(CLVAL(I), (TABLE((I-1)*NVAL2+J),J=1,NVAL2),I=1,NVALLl)
99999 FORMAT (' Frequencies for All Combinations of Values',K /, &
8X,6F7.2,/,5(F7.2,6F7.0,/))
END

EE Rogygmq\{q FREQ Chapter 1: Basic Statistics

28



Output

Frequencies for All Combinations of Values
1.50 2.50 3.50 4.50 5.50 6.50

0.50 3. 2. 4. 0. 0. 0
1.50 0. 5. 5. 2. 0. 0
2.50 0. 0. 1. 3. 2. 0
3.50 0. 0. 0. 0. 0. 2
4.50 0. 0. 0. 0. 1. 0
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UVSTA

Computes basic univariate statistics.

Required Arguments

X — |NROW| by NVAR + m matrix containing the data, where m is 0, 1, or 2 depending on whether any col-

umn(s) of X correspond to weights and/or frequencies. (Input)

STAT — 15 by NVAR matrix containing in each row statistics on all of the variables. (Output, if IDO =0 or

1; input/output, if IDO =2 or 3.)

The columns of STAT correspond to the columns of X, except for the columns of X containing weights
or frequencies. (The columns beyond the weights or frequencies column are shifted to the left.)

O ® N o Ul R W N~ H

10
11

12

13

14

15

STAT(I, *)

contains means.

contains variances.

contains standard deviations.

contains coefficients of skewness.
contains coefficients of excess (kurtosis).
contains minima.

contains maxima.

contains ranges.

contains coefficients of variation, when they are defined. If the coefficient of
variation is not defined for a given variable, STAT(9, *) contains a zero in the
corresponding position.

contains numbers (counts) of nonmissing observations.

is used only when CONPRM is positive, and, in this case, contains the lower
confidence limit for the mean (assuming normality).

is used only when CONPRM is positive, and, in this case, contains the upper
confidence limit for the mean (assuming normality).

is used only when CONPRV is positive, and, in this case, contains the lower
confidence limit for the variance (assuming normality).

is used only when CONPRV is positive, and, in this case, contains the upper
confidence limit for the variance (assuming normality).

is used only when weighting is used (IWT is nonnegative), and, in this case,
contains the sums of the weights.
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Optional Arguments

IDO — Processing option. (Input)
Default: IDO = 0.

IDO Action
0 This is the only invocation of UVSTA for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to UvsTa will be made. Initialization and
updating for the data in X are performed. The means are output correctly, but the other
quantities output in STAT are intermediate quantities.

2 This is an intermediate invocation of UvSTa, and updating for the data in X is
performed.
3 This is the final invocation of this routine. If NROW is not zero, updating is performed.

The wrap-up computations for STAT are performed.

NROW — The absolute value of NROW is the number of rows of data currently input in X. (Input)
Default: NROW = size (X,1).
NROW may be positive, zero, or negative. Negative NROW means that the -NROW rows of data are to be
deleted from some aspects of the analysis, and this should be done only if IDO is 2 or 3 and the wrap-
up computations for STAT have not been performed. When a negative value is input for NROW, it is
assumed that each of the -NROW rows of X has been input (with positive NROW) in a previous invoca-
tion of UVSTA. Use of negative values of NROW should be made with care and with the understanding
that some quantities in STAT cannot be updated properly in this case. In particular, the minima, max-
ima, and ranges are not updated because of deletion. It is also possible that a constant variable in the
remaining data will not be recognized as such.

NVAR — Number of variables (not including the weight or frequency variable, if used). (Input)
Default: NVAR = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDX = size (X,1).

IFRQ — Frequency option. (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the
frequencies.
Default: IFRQ = 0.

IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column IWT of X contains the weights.
Default: TWT = 0.

MOPT — Missing value option. (Input)
NaN (not a number from routine AMACH(6)) is interpreted as the missing value code and any value in
X equal to NaN is excluded from the computations.
Default: MOPT = 0.

MOPT Action

0 The exclusion is listwise. (The entire row of X is excluded if any of the values of the row
is equal to the missing value code.)

1 The exclusion is elementwise. (Statistics for variables with nonmissing values are
updated.)
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CONPRM — Confidence level for two-sided interval estimate of the means (assuming normality), in per-
cent. (Input)
If CONPRM < 0, no confidence interval for the mean is computed; otherwise, a CONPRM percent confi-
dence interval is computed, in which case CONPRM must be between 0.0 and 100.0. CONPRM is often
90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPRM = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPRM = .95.0.

CONPRV — Confidence level for two-sided interval estimate of the variances (assuming normality), in
percent. (Input)
The confidence intervals are symmetric in probability (rather than in length). See also the description
of CONPRM.
Default: CONPRV = .95.0.

IPRINT — Printing option. (Input)
Default: IPRINT = 0.

IPRINT Action

1 No printing is performed.
2 Statistics in STAT are printed if 100 = 0 or 3.
3 Intermediate means, sums of squares about the mean, minima,

maxima, and counts are printed when 100 =1 or 2, and all sta-
tistics in STAT are printed when 100 =0 or 3.

LDSTAT — Leading dimension of STAT exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDSTAT = size (STAT,1).

NRMISS — Number of rows of data encountered in calls to UVSTA that contain any missing values. (Out-
put, if IDO = 0 or 1; input/output, if IDO =2 or 3.)
Rows with a frequency of zero are not counted.

FORTRAN 90 Interface

Generic: CALL UVSTA (X, STAT [, ...])
Specific: The specific interface names are S_UVSTA and D_UVSTA.

FORTRAN 77 Interface

Single: CALL UVSTA (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, CONPRM, CONPRV, TPRINT,
STAT, LDSTAT, NRMISS)
Double: The double precision name is DUVSTA.
Description

For the data in each column of X, except the columns containing frequencies or weights, UVSTA computes the
sample mean, variance, minimum, maximum, and other basic statistics. It also computes confidence inter-
vals for the mean and variance if the sample is assumed to be from a normal population.
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Missing values, that is, values equal to NaN (not a number, the value returned by routine AMACH(6)), are
excluded from the computations. If MOPT is positive, the exclusion is listwise; that is, the entire observation is
excluded and no computations are performed even for the variables with valid values. If frequencies or
weights are specified, any observation whose frequency or weight is missing is excluded from the
computations.

Frequencies are interpreted as multiple occurrences of the other values in the observations. That is, a row of X
with a frequency variable having a value of 2 has the same effect as two rows with frequencies of 1. The total
of the frequencies is used in computing all of the statistics based on moments (mean, variance, skewness, and
kurtosis). Weights are not viewed as replication factors. The sum of the weights is used only in computing
the mean (of course, then the weighted mean is used in computing the central moments). Both weights and
frequencies can be zero, but neither can be negative. In general, a zero frequency means that the row is to be
eliminated from the analysis; no further processing, counting of missing values, or error checking is done on
the row. Although it is not required that frequencies be integers, the logic of their treatment implicitly
assumes that they are. Weights, on the other hand, are allowed to be continuous. A weight of zero results in
the row being counted, and updates are made of statistics and of the number of missing values. A missing
value for the frequency or a missing value for the weight when the frequency is nonzero results in the row
being deleted from the analysis; but even in that case, if one is nonmissing, it is an error for that nonmissing
weight or frequency to be negative.

The definitions of some of the statistics are given below in terms of a single variable x. The i-th datum is x;,
with corresponding frequency f; and weight w;. If either frequencies or weights are not specified, f; and /or w;

are identically one. The summation in each case is over the set of valid observations, based on the setting of
MOPT and the presence of missing values in the data.

Number of nonmissing observations, STAT(10, %)

n= Zf’
Mean, STAT(1, %)

>/ Wiki

AW
Variance, STAT(2, %)

B ijwz<xi_}w>2

n—1

S
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Skewness, STAT(4, *)

X Sowi(x= %)
[Zfiwi(xi_fwf/nr/z

Excess or Kurtosis, STAT(5, *)

S fwi(xi= %) n
[zfiw,(x,.—zw)z/n]z

Minimum, STAT(6, %)
Xpin = min(xl->
Maximum, STAT(7, *)
Xmax = max(x,)
Range, STAT(8, x)
Xmax ~ *min

Coefficient of Variation, STAT(9, %)

2

= for X, #0

Xy

The arguments IDO and NROW allow data to be input a few at a time and even to be deleted after having been
included in the analysis. The minima, maxima, and ranges are not updated when observations are deleted.

Comments
Workspace may be explicitly provided, if desired, by use of U2STA/DU2STA. The reference is

CALL U2STA (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, CONPRM, CONPRV,
IPRINT, STAT, LDSTAT, NRMISS, WK)

The additional argument is

WK — Real work vector of length specified above. WK should not be changed between calls to
U2STA.
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Examples

Example 1

This example uses data from Draper and Smith (1981). There are 5 variables and 13 observations.

USE UVSTA_INT
USE GDATA_INT

IMPLICIT NONE

X (LDX, NVAR)

All data are input at once.

No unequal frequencies or weights

Get 95% confidence limits.
Delete any row containing a missing

INTEGER LDSTAT, LDX, NVAR
PARAMETER (LDSTAT=15, LDX=13, NVAR=5)
INTEGER IPRINT, NR, NROW, NV
REAL CONPRM, CONPRV, STAT(LDSTAT,NVAR),
Get data for example.
CALL GDATA (5, X, NR, NV)
NROW = NR
are used.
value.
Print results.
IPRINT = 1

CALL UVSTA (X,
END

STAT, NROW=NROW,

IPRINT=IPRINT)

Output

Univariate Statistics from UVSTA

Variable Mean Variance Std. Dev. Skewness Kurtosis
1 7.4615 34.6026 5.8824 0.68768 0.07472
2 48.1538 242.1410 15.5609 -0.04726 -1.32257
3 11.7692 41.0256 6.4051 0.61064 -1.07916
4 30.0000 280.1667 16.7382 0.32960 -1.01406
5 95.4231 226.3136 15.0437 -0.19486 -1.34244

Variable Minimum Maximum Range Coef. Var. Count
1 1.0000 21.0000 20.0000 0.7884 13.0000
2 26.0000 71.0000 45.0000 0.3231 13.0000
3 4.0000 23.0000 19.0000 0.5442 13.0000
4 6.0000 60.0000 54.0000 0.5579 13.0000
5 72.5000 115.9000 43.4000 0.1577 13.0000

Variable Lower CLM Upper CLM Lower CLV Upper CLV
1 3.9068 11.0162 17.7930 94.2894
2 38.7505 57.5572 124.5113 659.8163
3 7.8987 15.6398 21.0958 111.7918
4 19.8852 40.1148 144.0645 763.4335
5 86.3322 104.5139 116.3726 616.6877
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Example 2

In this example, we use some simple data to illustrate the use of frequencies, missing values, and the param-
eters IDO and NROW. In the data below, “NaN” represents a missing value.

f x y

2 3.0 5.0

1 9.0 2.0

3 1.0 NaN

We bring in the data one observation at a time in this example. Also, we bring in one false datum and then
delete it on a subsequent call to UVSTA.
USE IMSL_LIBRARIES

IMPLICIT NONE
INTEGER LDSTAT, NVAR
PARAMETER (LDSTAT=15, NVAR=2)

INTEGER IDO, IFRQ, IPRINT, MOPT, NRMISS, NROW

REAL STAT (LDSTAT,NVAR), X1(1,NVAR+1)
! All data are input one observation
! at a time in the vector X1.

NROW = 1
! Frequencies are in the first
! position. No weights are used.
IFRQ = 1
! Get 95% confidence limits.
! Elementwise deletion of missing
! values.
MOPT = 1
! Print results, intermediate as well.
IPRINT = 2
! Bring in the first observation.
IDO =1
X1(1,1) = 2.0
X1(1,2) = 3.0
X1(1,3) = 5.0

CALL UVSTA (X1, STAT, IDO=IDO, NVAR=NVAR, IFRQ=IFRQ, MOPT=MOPT, &
IPRINT=IPRINT, NRMISS=NRMISS)
! Bring in the second observation.
IDO = 2
X1(1,1)
X1(1,2)
X1(1,3) =
CALL UVSTA (X1, STAT, IDO=IDO, NVAR=NVAR, IFRQ=IFRQ, MOPT=MOPT, &
IPRINT=IPRINT, NRMISS=NRMISS)
! Bring in a false observation.
X1(1,1)
X1(1,2)
X1(1,3)
CALL UVSTA (X1, STAT, IDO=IDO, NVAR=NVAR, IFRQ=IFRQ, MOPT=MOPT, &
IPRINT=IPRINT, NRMISS=NRMISS)
! Delete the false observation.

1l
N O -
o O O

I
w o W
o O O
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NROW

X1(1,1
1(1,2

X1(1,3

)
)

)

w o W

This may make the mimina, maxima,
and range incorrect.
1

o O O

CALL UVSTA (X1, STAT, IDO=IDO, NROW=NROW, NVAR=NVAR, IFRQ=IFRQ, &

NROW =

IDO
(

(
X1(1,3

X1(1,1
X1(1,2

)
)

)

1

MOPT=MOPT, IPRINT=IPRINT, NRMISS=NRMISS)
Bring in the final observation.
3.0

1.0
AMACH (6)

CALL UVSTA (X1, STAT, IDO=IDO, NROW=NROW, NVAR=NVAR, IFRQ=IFRQ, &

END

Output

Variable
1
2

Variable
1
2

Variable
1
2

Variable
1
2

Variable
1
2

Variable
1
2

Variable
1
2

MOPT=MOPT, IPRINT=IPRINT, NRMISS=NRMISS)

Intermediate Statistics from UVSTA

Mean Sum Sgs. Minimum Maximum Count
3.0000 0.0000 3.0000 3.0000 2.0000
5.0000 0.0000 5.0000 5.0000 2.0000

Intermediate Statistics from UVSTA

Mean Sum Sgs. Minimum Maximum Count
5.0000 24.0000 3.0000 9.0000 3.0000
4.0000 6.0000 2.0000 5.0000 3.0000

Intermediate Statistics from UVSTA

Mean Sum Sgs. Minimum Maximum Count
5.5000 25.5000 3.0000 9.0000 6.0000
3.5000 7.5000 2.0000 5.0000 6.0000

Intermediate Statistics from UVSTA

Mean Sum Sgs. Minimum Maximum Count
5.0000 24.0000 3.0000 9.0000 3.0000
4.0000 6.0000 2.0000 5.0000 3.0000

Univariate Statistics from UVSTA

Mean Variance Std. Dev. Skewness Kurtosis
3.0000 9.6000 3.0984 1.4142 0.5000
4.0000 3.0000 1.7321 -0.7071 -1.5000

Minimum Maximum Range Coef. Var. Count
1.0000 9.0000 8.0000 1.0328 6.0000
2.0000 5.0000 3.0000 0.4330 3.0000

Lower CLM Upper CLM Lower CLV Upper CLV
-0.2516 6.2516 3.7405 57.7470
-0.3027 8.3027 0.8133 118.4935
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RANKS

Computes the ranks, normal scores, or exponential scores for a vector of observations.

Required Arguments

X — Vector of length NOBS containing the observations to be ranked. (Input)

SCORE — Vector of length NOBS containing the rank or a transformation of that rank of each observation.
(Output)
X and SCORE may occupy the same memory.

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (X,1).

FUZZ — Value used to determine ties. (Input)
If |X(T) - X(J)| is less than or equal to FUZZ, then X(I) and X(J) are said to be tied.
Default: Fuzz = 0.0.

ITIE — Option for determining the method used to assign a score to tied observations. (Input)
Default: ITIE = 0.

ITIE Method
0 The average of the scores of the tied observations is used.
1 The highest score in the group of ties is used.
2 The lowest score in the group of ties is used.
3 The tied observations are to be randomly untied using an IMSL

random number generator.

ISCORE — Option for specifying the type of values returned in SCORE. (Input)
Default: ISCORE = 0.

ISCORE Type
Ranks
Blom version of normal scores

0

1

2 Tukey version of normal scores

3 Van der Waerdan version of normal scores
4

Expected value of normal order statistics (For tied observa-
tions, the average of the expected normal scores are used.)

a1

Savage scores (the expected value of exponential order
statistics)

FORTRAN 90 Interface

Generic: CALL RANKS (X, SCORE [, ...])
Specific: The specific interface names are S_RANKS and D_RANKS.
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FORTRAN 77 Interface

Single: CALL RANKS (NOBS, X, FUZZ, ITIE, ISCORE, SCORE)
Double: The double precision name is DRANKS.
Description

The routine RANKS determines the ranks, or various transformations of the ranks of the data in X. Ties in the
data can be resolved in four different ways, as specified in ITIE.

ISCORE = 0: Ranks

For this option, the values output in SCORE are the ordinary ranks of the data in X. If X(I) has the smallest
value among those in X and there is no other element in X with this value, then
SCORE (I) =1.If both X (I) and X (J) have the same smallest value, then

if ITIE=0, SCORE(I)=SCORE(J)=1.5

if ITIE=1, SCORE(I)= SCORE(J) =20

if ITIE =2, SCORE(I)= SCORE(J)=1.0

if ITIE=3, SCORE(I)=1.0and SCORE(J)=2.0
or SCORE(T) = 2.0 and SCORE(J) = 1.0.

When the ties are resolved by use of routine RNUNF (see Chapter 18, “Random Number Generation”) to generate
random numbers, different results may occur when running the same program at different times unless the
“seed” of the random number generator is set explicitly by use of the routine RNSET (see Chapter 18, “Random
Number Generation”). Ordinarily, there is no need to call the routine to set the seed, even if there are ties in the
data.

ISCORE = 1: Normal Scores, Blom Version

Normal scores are expected values, or approximations to the expected values, of order statistics from a nor-
mal distribution. The simplest approximations are obtained by evaluating the inverse cumulative normal
distribution function (routine ANORIN, see Chapter 18, “Random Number Generation”) at the ranks scaled into
the open interval (0, 1). In the Blom version (see Blom 1958), the scaling transformation for the rank

{1 < r; < n, where n is the sample size, NOBS) is (r; - 3/8)/(n + 1/4). The Blom normal score corresponding

45_1(7'1'_3/8)
n+1/4

where ®( ) is the normal cumulative distribution function.

to the observation with rank r; is

Adjustments for ties are made after the normal score transformation. That is, if X(I) equals X(J) (within
FUzZ) and their value is the k-th smallest in the data set, the Blom normal scores are determined for ranks of
kand k + 1, and then these normal scores are averaged or selected in the manner specified by ITIE. (Whether
the transformations are made first or ties are resolved first makes no difference except when averaging is
done.)
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ISCORE = 2: Normal Scores, Tukey Version

In the Tukey version (see Tukey 1962), the scaling transformation for the rank r;is (r; - 1/3)/(n + 1/3). The
Tukey normal score corresponding to the observation with rank r; is

n+1/3

Ties are handled in the same way as discussed above for the Blom normal scores.

ISCORE = 3: Normal Scores, Van der Waerden Version

In the Van der Waerden version (see Lehmann 1975, page 97), the scaling transformation for the rank r; is
r; / (n + 1). The Van der Waerden normal score corresponding to the observation with rank 7; is

-1 l"l'
¢ <n+1>

Ties are handled in the same way as discussed above for the Blom normal scores.

ISCORE = 4: Expected Value of Normal Order Statistics

For this option, the values output in SCORE are the expected values of the normal order statistics from a sam-
ple of size NOBS. If the value in X(I) is the k-th smallest, then the value output in SCORE(T) is E(Z), where E()

is the expectation operator and Z; is the k-th order statistic in a sample of size NOBS from a standard normal

distribution. Such expected values are computed by the routine ENOS (see Chapter 20, “Mathematical Sup-
port”). Ties are handled in the same way as discussed above for the Blom normal scores.

ISCORE = 5: Savage Scores

For this option, the values output in SCORE are the expected values of the exponential order statistics from a
sample of size NOBS. These values are called Savage scores because of their use in a test discussed by Savage
(1956) (see Lehman 1975). If the value in X(I) is the k-th smallest, then the value output in SCORE(I) is E(Yy),

where Y} is the k-th order statistic in a sample of size NOBS from a standard exponential distribution. The
expected value of the k-th order statistic from an exponential sample of size n (NOBS) is

1 1 1
”+n—l n—k+1

Ties are handled in the same way as discussed above for the Blom normal scores.

4o+

The example uses all of these options with the same data set, which contains some ties. The ties are handled
different ways in this example.

Comments
1.  Workspace may be explicitly provided, if desired, by use R2NKS/DR2NKS. The reference is:
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CALL R2NKS

(NOBS,
The additional argument is:

X, FUzZZ,

ITIE, ISCORE, SCORE, IWK)

IWK — Integer work vector of length NOBS.

2. The routine RNSET (see Chapter 18, “Random Number Generation”) can be used to initialize the seed of
the random number generator used to break ties. If the seed is not initialized by RNSET; different runs
of the same program can yield different results if there are tied observations and ITIE = 3.

Example

The data for this example, from Hinkley (1977), are the same used in several examples in this chapter. There
are 30 observations. Note that the fourth and sixth observations are tied and that the third and twentieth are

tied.
USE RANKS_INT
USE UMACH_INT
USE RNSET_INT
IMPLICIT NONE
INTEGER NOBS
PARAMETER (NOBS=30)
1
INTEGER ISCORE, ISEED, ITIE, NOUT
REAL FUZZ, SCORE (NOBS), X(NOBS)
I
DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,&
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/
!
CALL UMACH (2, NOUT)
! Ranks.
ISCORE = 0
! Average ties.
ITIE = 0
FUzZZ = 0.0
1
CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
WRITE (NOUT,99994) SCORE
99994 FORMAT (' Ranks', /, (1X,10F7.1))
! Blom normal scores.
ISCORE = 1
! Take largest ranks for ties.
ITIE = 1
FUZZ = 0.0
1
CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
WRITE (NOUT,99995) SCORE
99995 FORMAT (/, ' Blom normal scores', /, (1X,10F7.3))
! Tukey normal scores.
ISCORE = 2
! Take smallest ranks for ties.
ITIE = 2
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FUZZ = 0.0

CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
WRITE (NOUT,99996) SCORE
99996 FORMAT (/, ' Tukey normal scores', /, (1X,10F7.3))
! Van der Waerden scores.
ISCORE = 3
! Randomly resolve ties.
ISEED = 123457
CALL RNSET (ISEED)
ITIE = 3
FUZZ = 0.0

CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
WRITE (NOUT,99997) SCORE

99997 FORMAT (/, ' Van der Waerden scores', /, (1X,10F7.3))

! Expected value of normal O. S.

ISCORE = 4

1 Average ties.
ITIE = 0
FUzz = 0.0

CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
WRITE (NOUT,99998) SCORE

99998 FORMAT (/, Expected values of normal order statistics', /,&
(1X,10F7.3))
! Savage scores.
ISCORE = 5
! Average ties.
ITIE = 0
FUZZ = 0.0

CALL RANKS (X, SCORE, ISCORE=ISCORE, ITIE=ITIE, FUZZ=FUZZ)
WRITE (NOUT,99999) SCORE
99999 FORMAT (/, ' Expected values of exponential order statistics', &
/, (1X,10F7.2))

END
Output
Ranks
5.0 18.0 6.5 11.5 21.0 11.5 2.0 15.0 29.0 24.0
27.0 28.0 16.0 23.0 3.0 17.0 13.0 1.0 4.0 6.5
26.0 19.0 10.0 14.0 30.0 25.0 9.0 20.0 8.0 22.0

Blom normal scores

-1.024 0.209 -0.776 -0.294 0.473 -0.294 -1.610 -0.041 1.610 0.776
1.176 1.361 0.041 0.668 -1.361 .125 -0.209 -2.040 -1.176 -0.776
1.024 0.294 -0.473 -0.125 2.040 0.893 -0.568 0.382 -0.668 0.568

o

Tukey normal scores

-1.020 0.208 -0.890 -0.381 0.471 -0.381 -1.599 -0.041 1.599 0.773
1.171 1.354 0.041 0.666 -1.354 0.124 -0.208 -2.015 -1.171 -0.890
1.020 0.293 -0.471 -0.124 2.015 0.890 -0.566 0.381 -0.666 0.566
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Van der Waerden scores

-0.989 0.204 -0.753 -0.287 0.460 -0.372 -1.518 -0.040 1.518 0.753
1.131 1.300 0.040 0.649 -1.300 0.122 -0.204 -1.849 -1.131 -0.865
0.989 0.287 -0.460 -0.122 1.849 0.865 -0.552 0.372 -0.649 0.552
Expected values of normal order statistics

-1.026 0.209 -0.836 -0.338 0.473 -0.338 -1.616 -0.041 1.616 0.777
1.179 1.365 0.041 0.669 -1.365 0.125 -0.209 -2.043 -1.179 -0.836
1.026 0.294 -0.473 -0.125 2.043 0.894 -0.568 0.382 -0.669 0.568

Expected values of exponential order statistics
0 18 0.89 0.24 0.47 1.17 0.47 0.07 0.68 2.99 1.54
2.16 2.49 0.74 1.40 0.10 0.81 0.56 .03 .14 0.24
1.91 0.98 0.40 0.61 3.99 1.71 0.35 1.07 0.30 1.28

o
o
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LETTR

Produces a letter value summary.

Required Arguments

X — Vector of length NOBS containing the data. (Input)

SUMRY — Vector of length NUM containing the summary letter values. (Output)
If NUM is 5, for example, SUMRY contains the minimum, the lower hinge (quartile), the median, the
upper hinge, and the maximum, in that order.

NMISS — Number of missing values. (Output)

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (X,1).

NUM — Number of summary values. (Input)
NUM must be an odd integer greater than or equal to 3. A common value for NUM is 5.
Default: NUM = 5.

FORTRAN 90 Interface

Generic: CALL LETTR (X, SUMRY, NMISS [, ...])
Specific: The specific interface names are S_LETTR and D_LETTR.

FORTRAN 77 Interface

Single: CALL LETTR (NOBS, X, NUM, SUMRY, NMISS)
Double: The double precision name is DLETTR.
Description

The routine LETTR computes the median (“M”), the minimum, the maximum, and other depths or “letter
values”—hinges (“H”), eighths (“E”), sixteenths (“D”), etc.—as specified by NUM. If

NUM = 9, for example, the values in SUMRY correspond to min, D, E, H, M, H, E, D, and max, in that order. The
use of letter values in summarizing a set of data is due to Tukey. Examples and discussion of the use of letter
values are given by Tukey (1977, Chapter 2) and by Velleman and Hoaglin (1981, Chapter 2).

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TTR/DL2TTR. The reference is:
CALL L2TTR (NOBS, X, NUM, SUMRY, NMISS, WK)
The additional argument is:
WK — Work vector of length NOBS.
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2. Informational errors

Type

3 3

4 4
Example

In this example, LETTR is used to compute a letter value summary of the measurements (in inches) of precip-
itation in Minneapolis/St. Paul during the month of March for 30 consecutive years. These data were studied

Code

Description

The results are likely not to be meaningful if NUM is larger than the number of
valid observations, (NOBS - NMISS).

The number of valid observations (NOBS - NMISS) is not greater than zero.

by Hinkley (1977) and by Velleman and Hoaglin (1981), pages 50 - 53.

USE LETTR_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER I, NMISS, NOBS, NOUT, NUM
REAL SUMRY (11), X(30)
I
DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,&
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/
!
CALL UMACH (2, NOUT)
NOBS = 30
NUM = 11
1
CALL LETTR (X, SUMRY, NMISS, NUM=NUM)
WRITE (NOUT,99998) SUMRY(6), (SUMRY(6-I),SUMRY(6+I),I=1,5)
99998 FORMAT (' Letter Values', /, ' Lower Upper', &
/0" ', 6.3, /, ' H ', F6.3, 6X, F6.3, /, &
' E , F6.3, 6X, F6.3, /, ' D ', F6.3, 6X, F6.3, /, &
! ! , F6.3, 6X, F6.3, /, 'm/M ', F6.3, 6X, F6.3)
WRITE (NOUT,99999) NMISS
99999 FORMAT (' There are ', I2, ' missing values.')
END
Output
Letter Values
Lower Upper
M 1.470
H 0.900 2.100
E 0.680 2.905
D 0.495 3.230
! 0.395 4.060
m/M 0.320 4.750
There are 0 missing values.
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ORDST

Determines order statistics.

Required Arguments

X — Vector of length NOBS containing the data. (Input)

NOS — Number of order statistics. (Input)
NOS must be greater than or equal to one and less than or equal to NOBS.

OS — Vector of length NOS containing the order statistics. (Output)
NMISS — Number of missing values. (Output)

Optional Arguments

NOBS — Number of observations. (Input)
NOBS must be greater than or equal to one.
Default: NOBS = size (X,1).

IOPT — Option to choose the order statistics to be calculated. (Input)
Default: 10PT = 1.

IOPT Action

0 Calculate the NOS order statistics listed in 10S.
1 Calculate the first NOS order statistics.
2 Calculate the last NOS order statistics.

I0S —If TIOPT =0, 10S is a vector of length NOS containing the ranks of the order statistics. (Input)
The elements of T0S must be greater than or equal to one and less than or equal to NOBS. If TOPT =1
or 2, 10S is unreferenced and can be defined as a vector of length 1.

FORTRAN 90 Interface

Generic: CALL ORDST (X, NOS, 0S, NMISS [, ...])
Specific: The specific interface names are S_ORDST and D_ORDST.

FORTRAN 77 Interface

Single: CALL ORDST (NOBS, X, NOS, IOPT, I0S, OS, NMISS)
Double: The double precision name is DORDST.
Description

The routine ORDST determines order statistics from the data in X and returns them in the vector 0S. The rou-
tine ORDST first checks to see if X is sorted, in which case the order statistics are merely picked from X. If X is
not sorted, ORDST does either a complete or partial sort, depending on how many order statistics are
requested. Since either the largest few order statistics or the smallest few are often of interest, the option
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parameter IOPT allows the user to obtain the largest or the smallest order statistics easily; otherwise (when
IOPT is set to 0), the user specifies in the vector T0S exactly which order statistics are to be returned. If 10S is
used, the order statistics returned in OS are in the same order as the indicators in I0s.

Comments

1. Workspace may be explicitly provided, if desired, by use of 02DST/D0O2DST. The reference is:

CALL O2DST (NOBS, X, NOS, IOPT, I0S, OS, NMISS, WK)
The additional argument is as follows:
WK — Work vector of length NOBS.

Informational errors

Type Code Description

3 1 All of the observations are missing values. The elements of 0S have been set
to NaN (not a number).

3 2 NOS order statistics have been requested, but there are only
NOBS - NMISS valid observations. Order statistics greater than
NOBS - NMISS have been set to NaN (not a number).

3 3 Each value of 10s must be greater than 0 and less than or equal to the num-

ber of valid observations. The values of 0s that are not defined have been set

to NaN.

3. Missing values (NaN) are excluded from the analysis. Order statistics are based on the NOBS —NMISS

nonmissing elements of X.
Examples

Example 1

The data for these examples are from Hinkley (1977) and Velleman and Hoaglin (1981). They are the mea-
surements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30 consecutive
years. In the first example, the first five order statistics from a sample of size 30 are obtained. Since TOPT is

set to 1, TOS is not used.

USE ORDST_INT
USE UMACH_INT
USE WRRRN_INT
USE AMACH_INT

IMPLICIT NONE

INTEGER NOBS, NOS

PARAMETER (NOBS=30, NOS=5)
|

INTEGER NMISS, NOUT

REAL O0S (NOS), X(NOBS)

DATA X/0.77, 1.74, 0.81,

2.20, 3.00, 3.09,
0.81, 2.81, 1.87,

1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &

2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
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2.05/

CALL UMACH (2, NOUT)
CALL ORDST (X, NOS, 0S, NMISS)

CALL WRRRN ('First five order statistics:', 0S, 1, NOS, 1)
WRITE (NOUT,99999) NMISS

99999 FORMAT (' There are', I2, ' missing values.')
END

Output

First five order statistics:

1 2 3 4 5
0.3200 0.4700 0.5200 0.5900 0.7700
There are 0 missing values.

Example 2

In the second example, the last five order statistics from a sample of size 30 are obtained. This example uses
the same data as in the first example, but this time the first two observations have been set to a missing value
indicator (AMACH(6)). Note that since there are two missing values in the data set, the indices of the last five
order statistics are numbers 24, 25, 26, 27, and 28. In this example, NMISS will be returned with a value of 2.
The index of the last order statistic can be determined by NOBS - NMISS.

USE ORDST_INT
USE UMACH_INT
USE WRRRN_INT
USE AMACH_INT

IMPLICIT NONE
INTEGER IOPT, NOBS, NOS
PARAMETER (IOPT=2, NOBS=30, NOS=5)

INTEGER NMISS, NOUT
REAL OS (NOS) , X (NOBS)

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

CALL UMACH (2, NOUT)

X(1l) = AMACH(6)
X(2) = AMACH(6)
CALL ORDST (X, NOS, 0S, NMISS, IOPT=IOPT)
CALL WRRRN ('Last five order statistics:', 0S, 1, NOS, 1)
WRITE (NOUT,99999) NMISS
99999 FORMAT (' There are', I2, ' missing values.')
END
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Output

Last five order statistics:

1 2 3 4 5
2.810 3.000 3.090 3.370 4.750
There are 2 missing values.

Example 3

In this example, we illustrate the use of I0S to specify exactly which order statistics are to be computed. We
request what would be the last five order statistics from a sample of size 30, that is, order statistics

26,27, 28,29, and 30. As in example two, the data set has two missing values. Order statistics 29 and 30 are
not defined, but since they are specifically requested, a warning message is issued and 0S contains two miss-
ing values on return.

USE ORDST_INT
USE UMACH_INT
USE WRRRN_INT
USE AMACH_INT

IMPLICIT NONE
INTEGER IOPT, NOBS, NOS
PARAMETER (IOPT=0, NOBS=30, NOS=5)

INTEGER IOS(NOS), NMISS, NOUT
REAL OS (NOS), X(NOBS)

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

DATA I0S/26, 27, 28, 29, 30/

CALL UMACH (2, NOUT)

X(1l) = AMACH(6)

X(2) = AMACH(6)

CALL ORDST (X, NOS, 0S, NMISS, IOS=I0S, IOPT=IOPT)

CALL WRRRN ('Last five order statistics:', 0S, 1, NOS, 1)

WRITE (NOUT,99999) NMISS
99999 FORMAT (' There are', I2, ' missing values.')

END
Output
**%*% WARNING ERROR 3 from ORDST. Each value of IOS must be greater than 0
e and less than or equal to the number of valid observations,
e NOBS-NMISS, which is 28. IOS contains 2 values outside of
kel this range. The corresponding values of 0S have been set to
ol NaN (not a number) .

Last five order statistics:
1 2 3 4 5
3.090 3.370 4.750 NaN NaN
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There are 2 missing values.

=
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EQTIL

Computes empirical quantiles.

Required Arguments

X — Vector of length NOBS containing the data. (Input)

NQPROP — Number of quantiles. (Input)
NQPROP must be greater than or equal to one.

QPROP — Vector of length NOPROP containing the quantile proportions. (Input)
The elements of QPROP must lie in the interval (0, 1).

Q — Vector of length NOQPROP containing the empirical quantiles. (Output)
Q(i) corresponds to the empirical quantile at proportion QPROP(i). The quantiles are determined by lin-
ear interpolation between adjacent ordered sample values.

XLO — Vector of length NQPROP containing the largest element of X less than or equal to the desired quan-
tile. (Output)

XHI — Vector of length NQPROP containing the smallest element of X greater than or equal to the desired
quantile. (Output)

NMISS — Number of missing values. (Output)

Optional Arguments

NOBS — Number of observations. (Input)
NOBS must be greater than or equal to one.
Default: NOBS = size (X,1).

FORTRAN 90 Interface

Generic: CALL EQTIL (X, NQPROP, QPROP, Q, XLO, XHI, NMISS [, ...]1)
Specific: The specific interface names are S_EQTIL and D_EQTIL.

FORTRAN 77 Interface

Single: CALL EQTIL (NOBS, X, NQPROP, QPROP, Q, XL.O, XHI, NMISS)
Double: The double precision name is DEQTIL.
Description

The routine EQTIL determines the empirical quantiles, as indicated in the vector QPROP, from the data in X.
The routine EQTIL first checks to see if X is sorted; if X is not sorted, the routine does either a complete or
partial sort, depending on how many order statistics are required to compute the quantiles requested.

The routine EQTIL returns the empirical quantiles and, for each quantile, the two order statistics from the
sample that are at least as large and at least as small as the quantile. For a sample of size 1, the quantile corre-
sponding to the proportion p is defined as

Q) =~ f)xj+fx; 41
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wherej = [p(n +1)], f=p(n +1) - j, and x; is the j-th order statistic, if 1 <j < n; otherwise, the empirical quan-
tile is the smallest or largest order statistic.

Comments

1. Workspace may be explicitly provided, if desired, by use of E2TIL/DE2TIL. The reference is:
CALL E2TIL (NOBS, X, NQPROP, QPROP, Q, XLO, XHI, NMISS, WK)
The additional argument is:

WK — Workspace of length NOBS containing the sorted data. (Output)

If X is sorted in ascending order with all missing values at the end of X, then X and WK may share the
same storage location.

2. Informational error
Type Code Description

3 1 All of the observations are missing values. The elements of Q, XL.O, and XHI
have been set to NaN (not a number).

3. Missing values (NaN) are excluded from the analysis. Empirical quantiles are based on the
NOBS - NMISS nonmissing elements of X.

Example

In this example, five empirical quantiles from a sample of size 30 are obtained. Notice that the 0.5 quantile
corresponds to the sample median. The data are from Hinkley (1977) and Velleman and Hoaglin (1981). They
are the measurements (in inches) of precipitation in Minneapolis/St. Paul during the month of March for 30
consecutive years.

USE EQTIL_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER NOBS, NQPROP
PARAMETER (NOBS=30, NQPROP=5)

INTEGER I, NMISS, NOUT
REAL QPROP (NQPROP) , X(NOBS), XEMP(NQPROP), XHI (NQPROP), &
XLO (NQPROP)

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, &
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, &
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, &
2.05/

DATA QPROP/0.01, 0.50, 0.90, 0.95, 0.99/

CALL UMACH (2, NOUT)
CALL EQTIL (X, NQPROP, QPROP, XEMP, XLO, XHI, NMISS)
WRITE (NOUT, 99997)
99997 FORMAT (' Smaller Empirical Larger', /, &
' Quantile Datum Quantile Datum')
DO 10 1I=1, NQPROP
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WRITE (NOUT,99998)
10 CONTINUE

99998 FORMAT (4X, F4.2, 8X, F4.2,

WRITE (NOUT,99999) NMISS
99999 FORMAT (/, ' There are '
END
Output
Smaller Empirical
Quantile Datum Quantile
0.01 0.32 0.32
0.50 1.43 1.47
0.90 3.00 3.08
0.95 3.37 3.99
0.99 4.75 4.75

There are 0 missing values.

QPROP (I),

XLO(I),

missing values.')

Larger

Datum
.32
.51
.09
.75
.75

A~ A WR o

8X, F4.2,
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TWOMV

Computes statistics for mean and variance inferences using samples from two normal populations.

Required Arguments

X — Vector of length NROWX containing observations from the first sample. (Input)
Y — Vector of length NROWY containing observations from the second sample. (Input)
STAT — Vector of length 25 containing the statistics.

(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.) These are:
I STAT(I)

Mean of the first sample

Mean of the second sample

Variance of the first sample

Variance of the second sample

Number of observations in the first sample

A U W N

Number of observations in the second sample

(STAT(7) through STAT(14) depend on the assumption of equal variances.)

I STAT(I)

7 Pooled variance

8 t value, assuming equal variances
9

Probability of a larger t in absolute value, assuming normality,
equal means, and equal variance

10 Degrees of freedom assuming equal variances

11 Lower confidence limit for the mean of the first population minus
the mean of the second, assuming equal variances

12 Upper confidence limit for the mean of the first population minus
the mean of the second, assuming equal variances

13 Lower confidence limit for the common variance

14 Upper confidence limit for the common variance

(STAT(15) through STAT(19) use approximations that do not depend on an assumption of equal
variances.)
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I STAT(T)
15 t value, assuming unequal variances.

16 Approximate probability of a larger ¢ in absolute value, assuming
normality, equal means, and unequal variances

17 Degrees of freedom assuming unequal variances, for Satterth-
waite’s approximation

18 Approximate lower confidence limit for the mean of the first popu-
lation minus the mean of the second, assuming equal variances

19 Approximate upper confidence limit for the mean of the first popu-
lation minus the mean of the second, assuming equal variances

20 F value (greater than or equal to 1.0)

21 Probability of a larger F in absolute value, assuming normality and
equal variances

22 Lower confidence limit for the ratio of the variance of the first pop-
ulation to the second

23 Upper confidence limit for the ratio of the variance of the first pop-
ulation to the second

24 Number of missing values of first sample

25 Number of missing values of second sample

Optional Arguments

IDO — Processing option. (Input)
Default: I1D0 = 0.

IDO Action
0 This is the only invocation of TwoMV for this data set, and all the data are input at once.

1 This is the first invocation, and additional calls to TwoMv will be made. Initialization and
updating are performed. The means are output correctly, but most of the other quanti-
ties output in STAT are intermediate quantities.

2 This is an intermediate invocation of TwoMv, and updating for the data in X and v is
performed.
3 This is the final invocation of this routine. Updating for the data in X and ¥ and wrap-up

computations are performed.

NROWX — Absolute value of NROWX is the number of observations currently input in X. (Input)
Default: NROWX = size (X,1).
NROWX may be positive, zero, or negative. Negative NROWX means delete the -NROWX observations in X
from the analysis.

NROWY — Absolute value of NROWY is the number of observations currently input in Y. (Input)
Default: NROWY = size (Y,1).
NROWY may be positive, zero, or negative. Negative NROWY means delete the -NROWY observations in Y
from the analysis.
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CONPRM — Confidence level for two-sided interval estimate of the mean of X minus the mean of Y

(assuming normality of both populations), in percent. (Input)

Default: CONPRM = 95.0.

If CONPRM = 0, no confidence interval for the difference in the means is computed; otherwise, a
CONPRM percent confidence interval is computed, in which case CONPRM must be between 0.0 and
100.0. CONPRM is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level
ONECL, set CONPRM = 100.0 - 2.0 * (100.0 - ONECL).

CONPRYV — Confidence level for inference on variances. (Input)
Default: CONPRV = 95.0.
Under the assumption of equal variances, the pooled variance is used to obtain a two-sided CONPRV
percent confidence interval for the common variance in STAT(13) and STAT(14). Without making the
assumption of equal variances, the ratio of the variances is of interest. A two-sided CONPRV percent
confidence interval for the ratio of the variance of the first population (X) to that of the second popula-
tion (assuming normality of both populations) is computed and stored in STAT(22) and STAT(23). The
confidence intervals are symmetric in probability. See also the description of CONPRM.

IPRINT — Printing option. (Input)
If IPRINT = 0, no printing is performed; otherwise, various statistics in STAT are printed when
IDO=0or3.
Default: IPRINT = 0.

IPRINT Action

0 No printing.

1 Simple statistics (STAT (1) to STAT(6), STAT(24), and STAT(25)).
2 Statistics for means, assuming equal variances.

3 Statistics for means, not assuming equal variances.

4 Statistics for variances.

5 All statistics.

FORTRAN 90 Interface

Generic: CALL TWOMV (X, Y, STAT [, ...1)
Specific: The specific interface names are S_TWOMV and D_TWOMV.

FORTRAN 77 Interface

Single: CALL TWOMV (IDO, NROWX, X, NROWY, Y, CONPRM, CONPRV, IPRINT, STAT)
Double: The double precision name is DTWOMV.
Description

The routine TWOMV computes the statistics for making inferences about the means and variances of two nor-
mal populations, using independent samples in X and Y. For inferences concerning parameters of a single
normal population, see routine UVSTA. For two samples that are paired, see routine ATWOB (see Chapter 3,
“Correlation”), since the pairs can be considered to be blocks.

Let ux and

= ROQQ?WQ\{E{ TWOMV Chapter 1: Basic Statistics

56



ok

be the mean and variance, respectively, of the first population, and py and

2
Oy

be the corresponding quantities of the second population. The routine TWOMV is used for testing Uy = Wy and

2 _ 2
Oy = Oy

or for setting confidence intervals for uy - My and
2 2
Ox /o Y

The basic quantities in STAT(1) through STAT(4) are

nx Ny
x=Yx;/n, y=Yyl/n
2 TR
ny 1y
st:Z(xi—Y)/(nx l),andsi—Z(yl—y>/<ny—l>
i=1 =1

where 1, and n, are the respective sample sizes (in STAT(5) and STAT(6)).

Inferences about the Means

The test for the equality of means of two normal populations depends on whether or not the variances of the
two populations can be considered equal. If the variances are equal, the test is the two-sample t test, which is
equivalent to an analysis of variance test see (Chapter 4, “Analysis of Variance”). In this case, the statistics
returned in STAT(7) through STAT(12) are appropriate for testing Uy = My. The pooled variance (in STAT(7))

1S

(n —1>s2+<n —1>s2
s' = - nxjrny—)é :

The t statistic (in STAT(8)) is

= S\/<1/nx>_+ (Um)

For testing Wy = My + ¢, for some constant ¢, the confidence interval for u x - Wy can be used. (If the confi-

dence interval includes c, the null hypothesis would not be rejected at the significance level
1 - CONPRM/100.)
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If the population variances are not equal, the ordinary f statistic does not have a t distribution; and several
approximate tests for the equality of means have been proposed. (See, for example, Anderson and Bancroft
1952, and Kendall and Stuart 1979.) The name Fisher-Behrens is associated with this problem, and one of the
earliest tests devised for this situation is the Fisher-Behrens test, based on Fisher’s concept of fiducial probabil-
ity. Another test is called Satterthwaite’s procedure. The routine TWOMV computes the statistics for this
approximation, which was suggested by H.F. Smith and modified by EE. Satterthwaite (Anderson and
Bancroft 1952, page 83). The test statistic is

t'=(3-7) /s,

where

Sg= \/<s£/nx> + <S§,/ny>

Under the null hypothesis of equal population means, this quantity has an approximate ¢ distribution with
degrees of freedom f (in STAT(17)), given by

Inferences about the Variances
The F statistic for testing the equality of variances is given by

F =s%/s§, where s%

is the larger of

s> and si, and s%
is the smaller. If the variances are equal, this quantity has an F distribution with 7, - 1 and 7, - 1 degrees of

freedom.

It is generally not recommended that the results of the F test be used to decide whether to use the regular ¢
test or the modified ' on a single set of data. The more conservative approach is to use the modified ¢
(Satterthwaite’s procedure) if there is doubt about the equality of the variances.
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Examples

Example 1

This example is taken from Conover and Iman (1983, page 294). It involves scores on arithmetic tests of two
grade school classes. The question is whether a group taught by an experimental method has a higher mean
score. The data are shown below.

Scores for Scores for
Standard Group Experimental Group

72 111
75 118
77 128
80 138
104 140
110 150
125 163

164

169

It is assumed that the variances of the two populations are equal so the statistics of interest are in STAT(8)
and STAT(9). It is seen from the output below that there is strong reason to believe that the two means are dif-
ferent (t-value of -4.804). Since the lower 97.5% confidence limit does not include zero, the null hypothesis
that i, < 4, would be rejected at the 0.05 significance level. (The closeness of the values of the sample vari-

ances provides some qualitative substantiation of the assumption of equal variances.)

USE TWOMV_INT

IMPLICIT NONE
INTEGER IPRINT
REAL CONPRV, STAT(25), X(7), Y(9)

DATA X/72., 75., 77., 80., 104., 110., 125./y/111., 118., 128., &
138., 140., 150., 163., 1l64., 169./

IPRINT = 2
CONPRV = 0.0
CALL TWOMV (X, Y, STAT, IPRINT=IPRINT, CONPRV=CONPRV)
END
Output
Mean Inferences Assuming Equal Variances
Pooled Variance 434.633
t Value -4.804
Probability of a Larger t in Abs. Value 0.000
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Degrees of Freedom 14.000

Lower Confidence Limit Difference in Means -73.010
Upper Confidence Limit Difference in Means -27.942
Example 2

For a second example, the same data set is used to illustrate the use of the IDO parameter to bring in the data
one observation at a time. Since there are more “Y” values than “X” values, NROWX is set to zero on the later
calls to TWOMV.

USE TWOMV_INT

IMPLICIT NONE
INTEGER I, IDO, IPRINT, NROWX, NROWY
REAL STAT (25), X(7), Y(9)

DATA X/72., 75., 77., 80., 104., 110., 125./y/111., 118., 128., &
138., 140., 150., 163., 164., 169./

IPRINT
IDO
NROWX
NROWY =
DO 10 1I=1, 7
! Bring in first seven observations
! on X and Y, one at a time.
CALL TWOMV (X (I:), Y(I:), STAT, IDO=IDO, NROWX=NROWX, &
NROWY=NROWY, IPRINT=IPRINT)

5
1
1
1
1

IDO = 2
10 CONTINUE
! Now bring in remaining observations

! on Y.
NROWX = 0
CALL TWOMV (X(1:), Y(8:), STAT, IDO=IDO, NROWX=NROWX, &
NROWY=NROWY, IPRINT=IPRINT)
! Set IDO to indicate last observation.
IDO = 3
CALL TWOMV (X(1:), Y(9:), STAT, IDO=IDO, NROWX=NROWX, &
NROWY=NROWY, IPRINT=IPRINT)
END
Output
Statistics from TWOMV
First Sample Mean 91.857
Second Sample Mean 142.333
First Sample Variance 435.810
Second Sample Variance 433.750
First Sample Valid Observations 7.000
Second Sample Valid Observations 9.000
First Sample Missing Values 0.000
Second Sample Missing Values 0.000
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Mean Inferences Assuming Equal Variances

Pooled Variance 434.63
t Value -4.80
Probability of a Larger t in Abs. Value 0.00
Degrees of Freedom 14.00
Lower Confidence Limit Difference in Means -73.01
Upper Confidence Limit Difference in Means -27.94
Lower Confidence Limit for Common Variance 232.97
Upper Confidence Limit for Common Variance 1081.04

Mean Inferences Assuming Unequal Variances

t Value -4.8028
Approx. Prob. of a Larger t in Abs. Value 0.0003
Degrees of Freedom 13.0290
Lower Confidence Limit -73.1758
Upper Confidence Limit -27.7766

Variance Inferences

F Value 1.00475
Probability of a Larger F in Abs. Value 0.96571
Lower Confidence Limit for Variance Ratio 0.21600
Upper Confidence Limit for Variance Ratio 5.62621
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BINES

Estimates the parameter p of the binomial distribution.

Required Arguments

N — Total number of Bernoulli trials. (Input)
N is the parameter N in the binomial distribution from which one observation (K) has been drawn.

K — Number of successes in the N trials. (Input)

CONPER — Confidence level for two-sided interval estimate, in percent. (Input)
An approximate CONPER percent confidence interval is computed, hence, CONPER must be between
0.0 and 100.0. CONPER often will be 90.0, 95.0, or 99.0. For a one-sided confidence interval with confi-
dence level ONECL, set
CONPER = 100.0 - 2.0 * (100.0 - ONECL).

PHAT — Estimate of p. (Output)
PLOWER — Lower confidence limit for p. (Output)
PUPPER — Upper confidence limit for p. (Output)

FORTRAN 90 Interface

Generic: CALL BINES (N, K, CONPER, PHAT, PLOWER, PUPPER)
Specific: The specific interface names are S_BINES and D_BINES.

FORTRAN 77 Interface

Single: CALL BINES (N, X, CONPER, PHAT, PLOWER, PUPPER)
Double: The double precision name is DBINES.
Description

The routine BINES computes a point estimate and a confidence interval for the parameter, p, of a binomial
distribution, using the number of “successes”, K, in a sample of size N from a binomial distribution with
probability function

fx) = (J;])pX(l -p)F forx=0,1, ...,N

The point estimate for p is merely K/N.

The routine BINES makes use of the relationship between the binomial distribution and the beta distribution

(see Johnson and Kotz 1969, Chapter 3) by solving the following equations equivalent to those in Comment 2:
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Pr= ﬁK,N—Kﬂ,a/z

Pu = Bran-K1-an

where B, ;1 is the beta T critical value with parameters a and b (that is, the inverse beta distribution func-

tion evaluated at 1 - 7 ). The routine BETIN see (Chapter 17, “Probability Distribution Function and Inverses”) is
used to evaluate the critical values.

Comments
1. Informational errors
Type Code Description
3 1 CONPER is 100.0 or too large for accurate computations. The confidence limits

are set to 0.0 and 1.0.

3 2 CONPER is 0.0 or too small for accurate computations. The confidence limits
are both set to PHAT.

2. Since the binomial is a discrete distribution, it is not possible to construct an exact CONPER% confi-
dence interval for all values of CONPER. Let &« = 1 - CONPER/100. Then, the approximate lower and
upper confidence limits p; and p;; (PLOWER and PUPPER) are solutions to the equations

N

Z@) pi(1=p)" =2
x=K

K
Z@) Py =py) =2
x=0

These approximations are not just computational devices. Approximations to the confidence limits are
necessary because the binomial distribution is discrete.

Example

In this example, we assume that the number of defective microchips in a given lot follows a binomial distri-
bution. We estimate the proportion defective by taking a sample of 50. In this sample, 3 microchips were
found to be defective. The routine BINES is used to estimate p and to compute a 95% confidence interval.

USE BINES_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER K, N, NOUT
REAL CONPER, PHAT, PLOWER, PUPPER

CALL UMACH (2, NOUT)
N = 50
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K =3

CONPER = 95.0

CALL BINES (N, K, CONPER, PHAT, PLOWER, PUPPER)
WRITE (NOUT,99999) PHAT, PLOWER, PUPPER

99999 FORMAT (' Point estimate of the proportion: ', F5.3, /, &
' 95% confidence interval: (*, F5.3, ',', F5.3, &
"))
END
Output
Point estimate of the proportion: .060
95% confidence interval: ( .013, .165)
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POIES

Estimates the parameter of the Poisson distribution.

Required Arguments

IX — Vector of length NOBS containing the data. (Input)
The data are assumed to be a random sample from a Poisson distribution; hence, all elements of IX
must be nonnegative.

CONPER — Confidence level for two-sided interval estimate, in percent. (Input)
An approximate CONPER percent confidence interval is computed; hence, CONPER must be between
0.0 and 100.0. CONPER often will be 90.0, 95.0, or 99.0. For a one sided confidence interval with confi-
dence level ONECL, set
CONPER = 100.0 - 2.0 * (100.0 - ONECL).

THAT — Estimate of the parameter, theta (the mean). (Output)
TLOWER — Lower confidence limit for theta. (Output)
TUPPER — Upper confidence limit for theta. (Output)

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (IX,1).

FORTRAN 90 Interface

Generic: CALL POIES (IX, CONPER, THAT, TLOWER, TUPPER [, ...])
Specific: The specific interface names are S_POIES and D_POIES.

FORTRAN 77 Interface

Single: CALL POIES (NOBS, IX, CONPER, THAT, TLOWER, TUPPER)
Double: The double precision name is DPOIES.
Description

The routine POIES computes a point estimate and a confidence interval for the parameter, 8, of a Poisson
distribution. It is assumed that the vector IX contains a random sample of size NOBS from a Poisson distribu-
tion with probability function

fx)=e%*/x!, forx=0,1,2, ...

The point estimate for 0 corresponds to the sample mean.

By exploiting the relationship between the Poisson distribution and the chi-squared distribution (see Johnson
and Kotz, 1969, Chapter 4), the equations in Comment 2 can be written as
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1.2
01 = 2%2k.an

_ 1.2
0y = 2 X2k+2,1-0/2

where

2
Ava

is the chi-squared 7 critical value with degrees v of freedom (that is, the inverse chi-squared distribution

function evaluated at 1 - 7 ). The routine CHIIN (see Chapter 17, “Probability Distribution Functions and
Inverses”) is used to evaluate the critical values.

For more than one observation, the estimates are obtained as above and then divided by the number of
observations, NOBS.

Comments
1. Informational error
Type Code Description
3 1 CONPER is 0.0 or too small for accurate computations. The confidence limits

are both set to THAT.

2. Since the Poisson is a discrete distribution, it is not possible to construct an exact CONPER% confidence
interval for all values of CONPER. Let &« = 1 - CONPER/100, and let k be a single observation. Then, the
approximate lower and upper confidence limits 8 ; and 0 ; (TLOWER and TUPPER) are solutions to the

equations
exp( — eL)Ze’g/x! %
x=k
k
exp( — eU)Ze’;,/x! =0/)
x=0
Example

It is assumed that flight arrivals at a major airport during the middle of the day follow a Poisson distribution.
It is desired to estimate the mean number of arrivals per minute and to obtain an upper one-sided 95% confi-
dence interval for the mean. During a half-hour period, the number of arrivals each minute was recorded.
These data are stored in IX, and POIES is used to obtain the estimates.

USE POIES_INT
USE UMACH_INT

IMPLICIT NONE
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INTEGER NOBS
PARAMETER (NOBS=30)

INTEGER IX(NOBS), NOUT
REAL CONPER, THAT, TLOWER, TUPPER

DATA IX/2, O, 1, 1, 2, 0, 3, 1, 2, 0, O, 1, 1, 0, O, O, O, O, 0, &
o, 1, 2, 0, 2, 0, 0, 1, 2, 0, 2/

CALL UMACH (2, NOUT)
! For a 95 percent one-sided ! .I.,
! CONPER = 100.0 - 2.0*(100.0-95.0)
CONPER = 90.0
CALL POIES (IX, CONPER, THAT, TLOWER, TUPPER)
WRITE (NOUT,99999) THAT, TUPPER

99999 FORMAT (' Point estimate of the Poisson mean: ', F5.3, /, &
'  Upper one-sided 95% confidence limit: ', F5.3)
END
Output

Point estimate of the Poisson mean: 0.800
Upper one-sided 95% confidence limit: 1.125
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NRCES

Computes maximum likelihood estimates of the mean and variance from grouped and/or censored normal
data.

Required Arguments

XRT — Vector of length NOBS containing either the exact value of the data or the right endpoint of the cen-
soring interval for interval-censored or right-censored data. (Input)
See the argument ICEN.

XLT — Vector of length NOBS containing the left endpoint of the censoring interval for interval-censored or
left-censored data. (Input)
See the argument ICEN. XLT is not used if there is no left censoring.

ICEN — Vector of length NOBS containing the censoring codes. (Input)
The values in ICEN indicate the meaning of the values in XRT and/or XLT.

ICEN(I) Censoring

0 Exact response at XRT(I).

1 Right censored. The response is greater than XRT(T).

2 Left censored. The response is less than or equal to XLT(I).
3

Interval censored. The response is greater than XRT(I), but less than or equal to XLT(I).

XMEAN — Estimate of the mean. (Input/Output if INIT = 0; output otherwise)

XSIGMA — Estimate of the standard deviation. (Input/Output if INIT = 0; output otherwise)

VXM — Estimate of the variance of the mean estimate. (Output)

VXS — Estimate of the variance of the variance estimate. (Output)

COVXMS — Estimate of the covariance of the mean and the variance estimates. (Output)

NUMBER — Vector of length 4 containing the numbers of observations having the various censoring
properties. (Output)
NUMBER(1) is the number of exact observations. NUMBER(2) is the number of observations specified by

a lower bound (right censored). NUMBER(3) is the number of observations specified by a upper bound
(left censored). NUMBER(4) is the number of observations specified by an interval.

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (XRT,1).

EPSM — Convergence criterion for the mean estimate. (Input)
See the argument EPSSIG. If EPSM is not positive, EPSM = 0.00001 is assumed.
Default: EPSM = .00001.

EPSSIG — Convergence criterion for the variance estimate. (Input)
Convergence is assumed when the relative change in the mean estimate is less than EPSM and the rela-
tive change in the variance estimate is less than EPSSIG . If EPSSIG is not positive, EPSSIG = 0.00001
is assumed.
Default: EPSSIG = .00001.
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MAXITS — Maximum number of iterations allowed. (Input)
A typical value of MAXITS is 25.
Default: MAXITS = 25.

INIT — Initialization option. (Input)
Default: INIT = 1.

INIT Action
0 On input, XMEAN and XSIGMA contain initial estimates of the parameters.

1 If there are enough exactly specified data, initial estimates are obtained from it; and, if
there are not enough such data, fixed starting values (XRT(1) for the mean and 1.0 for the
variance) are used.

FORTRAN 90 Interface

Generic: CALL NRCES (XRT, XL'T, ICEN, XMEAN, XSIGMA, VXM, VXS, COVXMS,
NUMBER [, ...1)
Specific: The specific interface names are S_NRCES and D_NRCES.

FORTRAN 77 Interface

Single: CALL NRCES (NOBS, XRT, XLT, ICEN, EPSM, EPSSIG, MAXITS, INIT, XMEAN, XSTIGMA,
VXM, VXS, COVXMS, NUMBER)
Double: The double precision name is DNRCES.
Description

The routine NRCES computes maximum likelihood estimates of the mean and variance of a normal popula-
tion, using a sample that may be censored. An observation whose value is known exactly is input in XRT, and
the corresponding element in ICEN is set to 0. If an observation is known only by a lower bound, we say the
observation is right censored; the lower bound is input in XRT, and the corresponding element in ICEN is set to
1. If an observation is known only by an upper bound, we say the observation is left censored; the upper
bound is input in XLT, and the corresponding element in ICEN is set to 2. If an observation is known only by
two bounds, we say the observation is interval censored; the lower bound is input in XRT, the upper bound is
input in XLT, and the corresponding element in ICEN is set to 3.

Newton-Raphson iterations are used to find a stationary point of the likelihood function, and the Hessian at
that point is used to estimate the variances and covariance of the estimates of the population mean and vari-
ance. If the numerical derivative of the estimate of the variance increases on nine consecutive iterations, the
process is deemed divergent and a terminal error is issued. The iterations begin at user-supplied values if
INIT is set to 0.

Example

This example uses an artificial data set consisting of 18 observations. The first 12 observations are known
exactly; the next three are known only by a lower bound; the next two, by an upper bound; and the last one,
by two bounds.
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USE NRCES_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER NOBS
PARAMETER (NOBS=18)
1
INTEGER ICEN(NOBS), INIT, MAXITS, NOUT, NUMBER (4)
REAL COVXMS, EPSM, EPSSIG, VXM, VXS, XLT(NOBS), XMEAN, &
XRT (NOBS), XSIGMA
1
DATA XRT/4.5, 5.4, 3.9, 5.1, 4.6, 4.8, 2.9, 6.3, 5.5, 4.6, 4.1, &
5.2, 3.2, 4.0, 3.1, 0.0, 0.0, 2.2/
DATA XLT/0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, &
0.0, 0.0, 0.0, 0.0, 5.1, 3.8, 2.5/
DATA ICEN/O, O, O, O, O, O, O, O, O, O, O, O, 2, 21, 1, 2, 2, 3/
1
CALL UMACH (2, NOUT)
EPSM = 0.01
EPSSIG = 0.01
MAXITS = 25
INIT =1
CALL NRCES (XRT, XLT, ICEN, XMEAN, XSIGMA, VXM, VXS, COVXMS, &
NUMBER, EPSM=EPSM, EPSSIG=EPSSIG)
WRITE (NOUT,99999) XMEAN, XSIGMA, VXM, VXS, COVXMS, NUMBER
99999 FORMAT (' Estimate of mean: ', F8.4, &
/, ' Estimate of variance: ', F8.4, &
/, ' Estimate of variance of mean estimate: ', F8.4, &
/, ' Estimate of variance of variance estimate: ', F8.4, &
/, ' Estimate of covariance of mean and variance:',6 F8.4, &
/, ' Number of exact observations: ', 14, &
/, ' Number of right-censored observations: v, I4, &
/, ' Number of left-censored observations: ', 14, &
/, ' Number of interval-censored observations: ', I4)
END
Output
Estimate of mean: 4.4990
Estimate of standard deviation: 1.2304
Estimate of variance of mean estimate: 0.0819
Estimate of variance of variance estimate: -0.0494
Estimate of covariance of mean and variance: -0.0019
Number of exact observations: 12
Number of right-censored observations: 3
Number of left-censored observations: 2
Number of interval-censored observations: 1
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GRPES

Computes basic statistics from grouped data.

Required Arguments
TABLE — Vector of length NGROUP containing the frequencies within the groups. (Input)
The entries in TABLE are interpreted as counts. They must be nonnegative.
CLOW — The center (class mark) of the lowest class interval. (Input)

CWIDTH — The class width. (Input)
CWIDTH must be positive.

STAT — Vector of length 13 containing the statistics. (Output)

I STAT(I)

1 The sum of the frequencies in TABLE.

2 Mean (arithmetic mean, first moment).

3 Sample standard deviation. (Uses STAT(1) - 1 as divisor).

4 Second moment about the mean, uncorrected for grouping. (Uses

STAT(1) as divisor.)

5 Second moment about the mean, adjusted using Sheppard’s
correction.

6 Third moment about the mean, uncorrected for grouping.

7 Third moment about the mean, adjusted using Sheppard’s
correction.

8 Fourth moment about the mean, uncorrected for grouping.

9 Fourth moment about the mean, adjusted using Sheppard’s
correction.

10 Median.

11 Geometric mean; defined only if CLOW - CWIDTH/2 is nonnegative.
12 Harmonic mean; defined only if cLow - CWIDTH/2 is nonnegative.
13 Mode; defined only if one element of TABLE is strictly greater than

all other elements of TABLE.

Optional Arguments
NGROUP — Number of groups. (Input)
Default: NGROUP = size (TABLE,1).
IPRINT — Printing option. (Input)
If IPRINT = 0, no printing is performed; and if IPRINT = 1, the statistics in STAT are printed.
Default: IPRINT = 0.
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FORTRAN 90 Interface

Generic: CALL GRPES (TABLE, CLOW, CWIDTH, STAT [, ...])
Specific: The specific interface names are S_GRPES and D_GRPES.

FORTRAN 77 Interface

Single: CALL GRPES (NGROUP, TABLE, CLOW, CWIDTH, IPRINT, STAT)
Double: The double precision name is DGRPES.
Description

The routine GRPES computes various statistics using data from equally spaced groups. The second, third,
and fourth moments are computed both with and without Sheppard’s corrections. These corrections for
grouped data are most useful for distributions whose densities tail off smoothly (such as the normal distribu-
tion). Kendall, Stuart, and Ord (1987, Chapters 2 and 3) discuss these corrections.

The moments are computed using the sum of the frequencies as the divisor. The standard deviation
(STAT(3)), on the other hand, is computed using as the divisor the sum of the frequencies minus one.

If any of the class marks are negative, the geometric and harmonic means are not computed, and NaN (not a
number) is stored as the value of STAT(11). Likewise, if the mode does not exist (no group has a frequency
greater than that of all other groups), NaN is stored as the value of STAT(13).

Examples

Example 1

This example is taken from Conover and Iman (1983, page 119). The objective is to compute some basic statis-
tics relating to test scores, using the following data:

Score Frequency
91 - 100 7
81-90 13
71 -80 11
61-70 5
<60 4

USE GRPES_INT

IMPLICIT  NONE

INTEGER IPRINT, NGROUP

REAL CLOW, CWIDTH, STAT(13), TABLE(5)

!
NGROUP = 5
CLOW = 55.5
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CWIDTH =
TABLE (1)
TABLE(2) =
TABLE (3) =
TABLE (4)
TABLE (5)
IPRINT
CALL GRPES
END

Output

TABLE, CLOW, CWIDTH,

Statistics from GRPES

Sum freqgs.

Mean

Std. dev.

2nd moment

2nd, adj.

3rd moment

3rd, adj. -
4th moment 4
4th, adj. 4
Median

Geometric
Harmonic

Mode

Example 2

40.
79.
12.
142.
134.
-741.
2716.
8242.
7929.
80.
78.
77.
85.

U O O Ul O WOo ik ok oo

STAT,

IPRINT=IPRINT)

In this example, there are negative values of some class marks, and there is no modal class.

USE GRPES_

IMPLICIT
INTEGER
REAL

NGROUP = 5
CLOW = -2.
CWIDTH =
TABLE (1)
TABLE (2)

Class Marks
-2.0
-1.0
0.0
1.0
2.0
INT
NONE
NGROUP, IPRINT
TABLE (5) ,
0
0
2.0
5.0

Frequency
2
5

CLOW, CWIDTH, STAT(13)
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TABLE(3) = 7.0

TABLE(4) = 7.0

TABLE(5) = 2.0

IPRINT = 1

CALL GRPES (TABLE, CLOW, CWIDTH, STAT, IPRINT=IPRINT)

END
Output
Statistics from GRPES
Sum fregs. 23.0000
Mean 0.0870
std. dev. 1.1246
2nd moment 1.2098
2nd, adj. 1.1265
3rd moment -0.2293
3rd, adj. -0.2510
4th moment 3.3292
4th, adj. 2.7960
Median 0.1429

The mode is not defined, since no class has higher
frequency than all others.

The geometric and harmonic means are not defined, since
the lower bound is negative.
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CSTAT

Computes cell frequencies, cell means, and cell sums of squares for multivariate data.

Required Arguments

X — |NROW| by NCOL matrix containing the data. (Input)
Each column of X represents either a classification variable, a response variable, a weight, or a
frequency.
KMAX — Maximum number of cells. (Input)
This quantity does not have to be exact, but must be at least as large as the actual number of cells, K.
CELIF — Matrix with min(KMAX, K) columns containing cell information.
(Output, if I1DO = 0 or 1; input/output, if IDO = 2.)
The number of rows in CELIF depends on the eight cases tabled below.

Case Contents Rows in CELIF
1 MOPT <0, IFRQ=0and Twr =0 NCOL + NR + 1
2 MOPT <0, IFRQ >0 and TwT =0 NCOL + NR
3 MOPT < 0, IFRQ = 0 and IwT >0 NCOL + NR + 1
4 MOPT < 0, IFRQ > 0 and IwT >0 NCOL + NR
5 MOPT >0, IFRQ =0 and ITwT =0 NCOL +2 * NR + 1
6 MOPT >0, IFRQ > 0 and TwT =0 NCOL + 2 * NR
7 MOPT >0, IFRQ = 0 and IwT > 0 NCOL + 3 * NR
8 MOPT >0, IFRQ > 0 and TwT >0 NCOL +3 *NR -1

Each column contains information on each unique combination of values of the m classification vari-
ables that occurs in the data. The first m rows give the values of the classification variables. Row m + 1
gives the number of observations that are in this cell. (For cases 2, 4, 6 and 8, this is the sum of the fre-
quencies.) For case 3 and 4, row m + 2 contains the sum of the weights. For NR greater than zero, the
remaining rows (beginning with row m + 3 in case 3 and 4 and with row m + 2 otherwise) contain
information concerning the response variables. For cases 1, 2, 3 and 4, there are 2 * NR remaining rows
with the cell (weighted) mean and cell (weighted) sum of squares for each of the NR response vari-
ables. For cases 5 and 6, there are 3 * NR remaining rows with the sample size, the mean and sum of
squares for each of the NR response variables. For case 7 and 8, there are 4 * NR remaining rows with
the sample size, the sum of weights, weighted means, and weighted sum of squares for each of the NR
response variables.
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Optional Arguments

IDO — Processing option. (Input)
Default: IDO = 0.

IDO Action

0 This is the only invocation of CSTAT for this data set, and all the
data are input at once.

1 This is the first invocation, and additional calls to cSTAT will be
made. Initialization and updating for the data in X are performed.

2 This is an intermediate invocation of CSTAT, and updating for the
data in X is performed.

NROW — The absolute value of NROW is the number of rows of data currently input in X. (Input)
Default: NROW = size (X,1).
NROW may be positive or negative. Negative NROW means that the -NROW rows of data are to be deleted
from some aspects of the analysis, and this should be done only if IDO is 2. When a negative value is
input for NROW, it is assumed that each of the ~-NROW rows of X has been input (with positive NROW) in
previous invocations of CSTAT.

NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: L.DX = size (X,1).

NR — Number of response variables. (Input)
NR = 0 means no response variables are input. Otherwise, cell means and sums of squares are com-
puted for the response variables.
Default: NR = 0.

IRX — Vector of length NR. (Input if NR is greater than 0.)
The IRX(1), ..., IRX(NR) columns of X contain the response variables for which cell means and sums of
squares are computed.

IFRQ — Frequency option. (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the
frequencies.
Default: IFRQ = 0.

IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column IWT of X contains the weights.
Default: IWT = 0.

MOPT — Missing value option. (Input)
If MOPT is zero, the exclusion is listwise. If MOPT is positive, the following occurs: (1) if a classification
variable’s value is missing, the entire case is excluded, (2) if
IFRQ > 0 and the frequency variable’s value is missing, the entire case is excluded, (3) if IWT > 0 and
the weight variable’s value is missing, the case is classified and the cell frequency updated, but no
information with regard to the response variables is computed, and (4) if only some response vari-
ables’ values are missing, all computations are performed except those pertaining to the response
variables with missing values.
Default: MOPT = 0.
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K — Number of cells or an upper bound for this number. (Input/Output)
On the first call K must be input K = 0. It should not be changed between calls to CSTAT. K is incre-
mented by one for each new cell up to KMAX cells. Once KMAX cells are encountered, K is incremented
by one for each observation that does not fall into one of the KMAX cells. In this case, K is an upper
bound on the number of cells and can be used for KMAX in a subsequent run.
Default: K = 0.

LDCELI — Leading dimension of CELIF exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCELI = size (CELIF,1).

FORTRAN 90 Interface

Generic: CALL CSTAT (X, KMAX, CELIF [,...])
Specific: The specific interface names are S_CSTAT and D_CSTAT.

FORTRAN 77 Interface

Single: CALL CSTAT (IDO, NROW, NCOL, X, LDX, NR, IRX, IFRQ, IWT, MOPT, KMAX, K, CELTIF,
LDCELI)
Double: The double precision name is DCSTAT.
Description

The routine CSTAT computes cell frequencies, cell means, and cell sums of squares for multivariate data in X.
The columns of X can contain data for four types of variables: classification variables, a frequency variable, a
weight variable, and response variables. The frequency variable, the weight variable, and the response vari-
ables are all designated by indicators in IFRQ, IWT, and IRX. All other variables are considered to be
classification variables; hence, there are m classification variables, where m = NCOL - NR if there is no weight
or frequency variable, m = NCOL - NR - 1 if there is a weight or frequency variable but not both, and

m =NCOL - NR - 2 if there are weight and frequency variables.

Each combination of values of the classification variables is stored in the first m rows of CELIF. For each
combination of values of the classification variables, the frequencies are stored in the next row of CELIF.
Then, for each combination, means and sums of squares for each of the response variables are computed and
stored in the remaining rows of CELIF. If a weighting variable is specified, the sum of the weights for each
combination is computed and stored. If missing values are deleted elementwise (that is, if MOPT is positive),
the frequencies and sums of weights for each of the response variables are stored in the rows of CELIF.

Comments
1. If no nonmissing observations with positive weights or frequencies exist in a cell for a particular
response variable, the mean and sum of squares are set to NaN (not a number).

2. Incases 3 and 6, if a zero weight is encountered, there is no contribution to the means or sums of
squares, but the sample sizes are implemented by one for that observation.
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Examples

Example 1

In this example, there are two classification variables, C; and C,, and two response variables, Ry and R,. Their

values are shown below.

G
1 2
Ry |Ry Ry |Rp
1 5.0 34 3.8 24
Cy 7.0 2.6 52 6.3
49 1.2
2 |43 9.8 6.5 3.4
3.2 7.1 3.1 5.1
1.7 6.3
USE CSTAT_INT
USE WRRRL_INT
IMPLICIT NONE
INTEGER KMAX, LDCELI, LDX, NR, NCOL
PARAMETER (KMAX=4, LDCELI=15, LDX=10, NR=2, NCOL=4)
1
INTEGER IDO, IFRQ, IRX(NR), IWT, K, MINO, MOPT, NROW
REAL CELIF (LDCELI, KMAX), X(LDX,NCOL)
CHARACTER CLABEL(1)*6, FMT*7, RLABEL(7)*6
INTRINSIC MINO
! Get data for example
DATA X/1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0, &
1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 0, 2.0, 2.0, 5.0, 7.0, 4.3, &
3.2, 1.7, 3.8, 5.2, 4.9, 6.5, 1, 3.4, 2.6, 9.8, 7.1, 6.3, &
2.4, 6.3, 1.2, 3.4, 5.1/

! All data are input at once

IDO =0

NROW = 10

K =0
! No unequal frequencies or weights
! are used

IFRQ = 0

IWT =0
! Response variables are in 3rd and 4th
! columns

IRX (1) = 3

IRX(2) = 4
! Delete any row containing a missing
! value

MOPT = O

CALL CSTAT (X, KMAX, CELIF, NR=NR, IRX=IRX, K=K)
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CLABEL (
RLABEL (
RLABEL (
RLABEL (
RLABEL (
RLABEL (
RLABEL (
RLABEL (
FMT

CALL WRRRL

1)
1)
2)
3)
4)
5)
6)
7)

NCA=MINO (KMAX, K),
END

Output

Statistics for

1.00 1.00

1.00 2.00
Freq. 2.00 3.00
Mean 1 6.00 3.07
SS 1 2.00 3.41
Mean 2 3.00 7.73
SS 2 0.32 6.73
Example 2

('Statistics for the Cells',
RLABEL, CLABEL, NRA=(NCOL+NR+1),
FMT=FMT)

'Freqg.'
'Mean 1'°'
'SS 1!
'Mean 2'
'SS 2!
'(W10.4)"

the Cells

B W Rk R WwWwE N

.00
.00
.00
.63
.09
.30
.22

Print the results

CELIF,

P oD NN

&

.00
.00
.00
.80
.78
.25
.44

This example uses the same data as in the first example, except some of the data are set to missing values.
Also, a frequency variable is used. It is in the fourth column of X. The frequency variable indicates that the

values of the classification and response variables in the first observation occur 3 times and that all other fre-
quencies are 1. Since MOPT is greater than zero, statistics on one response variable are accumulated even if the

other response variable has a missing value. If the frequency variable has a missing value, however, the
entire observation is omitted.

The missing value is NaN (not a number) that can be obtained with the argument of 6 in the routine AMACH
(Reference Material). For this example, we set the first response variable in the first cell (C; =1,C, =1) toa

missing value; we set the second response variable in the (2, 1) cell to a missing value; and we set the fre-

quency variable in the (1, 2) cell to a missing value. The data are now as shown below, with “NaN" in place of

the missing values.
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G
1 2
Ry |Ry |R1 [Ry
1 (NaN (34 3.8 NaN
Cy NaN (3.4 52 6.3
NaN (34 49 1.2
7.0 2.6
2 NaN [NaN (6.5 34
3.2 7.1 3.1 5.1
1.7 6.3

The first two rows output in CELIF are the values of the classification variables, and the third row is the fre-
quencies of the cells, as before. The next three rows correspond to the first response variable, and the last
three rows correspond to the second response variable. (This is “case 6” above, where the argument CELIF is

described.)

USE CSTAT_INT
USE WRRRN_INT

IMPLICIT NONE
INTEGER KMAX, LDCELI, LDX, NR, NCOL, NROW
PARAMETER (KMAX=4, LDCELI=15, LDX=10, NR=2, NCOL=5)
1
INTEGER IDO, IFRQ, IRX(NR), IWT, K, MINO, MOPT
REAL CELIF (LDCELI,KMAX), X(LDX,NCOL), AMACH
INTRINSIC MINO
! Get data for example.
DATA X/1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.0, &
1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 5.0, 7.0, 4.3, &
3.2, 1.7, 3.8, 5.2, 4.9, 6.5, 3.1, 3.4, 2.6, 9.8, 7.1, 6.3, &
2.4, 6.3, 1.2, 3.4, 5.1, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, &
1.0, 1.0, 1.0/
! All data are input at once.
IDO =0
NROW = 10
K =0
! Frequencies are in the 5th column.
! All weights are equal
IFRQ = 5
IWT =0
! Response variables are in 3rd and 4th
! columns.
IRX (1) = 3
IRX(2) = 4
! Set some values to “missing” for
! this example. Specify elementwise
! deletion of missing values of the
! response variables.
MOPT =1
X(1,3) = AMACH(6)
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X(6,4) = AMACH(6)

X(3,5) = AMACH(6)
!

CALL CSTAT

CALL WRRRN

END

Output

Statistics for the Cells

1
.00
.00
.00
.00
.00
.00
.00
.20
.48

W oo Jo U WN
OCWBdONR IR,

OO NEDNMNNDDNDDNDERE

2

.00
.00
.00
.00
.45
.12
.00
.70
.32

=

W W NP AW wEREDN

3

.00
.00
.00
.00
.63
.09
.00
.75
.01

PN oD NN

(X, KMAX, CELIF, NR=NR,
K=K)

4

.00
.00
.00
.00
.80
.78
.00
.25
.44

IRX=IRX, MOPT=MOPT,

Print the results.
('Statistics for the Cells',
NCA=MINO (KMAX, K))

IFRQ=IFRQ, &

CELIF, NRA=(NCOL+2*NR), &
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MEDPL

Computes a median polish of a two-way table.

Required Arguments

TABLE — NROW by NCOL matrix containing the table. (Input)

MAXIT — Maximum number of polishing iterations to be performed. (Input)
An iteration is counted each time the rows or the columns are polished. The iterations begin by polish-
ing the rows.

PTABLE — (NROW + 1) by (NCOL + 1) matrix containing the cell residuals from the fitted table and, in the
last row and column, the marginal residuals. (Output)

Optional Arguments
NROW — Number of rows in the table. (Input)
Default: NROW = size (TABLE,1).

NCOL — Number of columns in the table. (Input)
Default: NCOL = size (TABLE,2).

LDTABL — Leading dimension of TABLE exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDTABL = size (TABLE,1).

LDPTAB — Leading dimension of PTABLE exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDPTAB = size (PTABLE,1).

ITER — Number of iterations actually performed. (Output)

FORTRAN 90 Interface

Generic: CALL MEDPL (TABLE, MAXIT, PTABLE [, ...])
Specific: The specific interface names are S_MEDPL and D_MEDPL.

FORTRAN 77 Interface

Single: CALL MEDPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE, LDPTAB, ITER)
Double: The double precision name is DMEDPL.
Description

The routine MEDPL performs a median polish on a two-way table. It first copies TABLE into PTABLE and fills
the last row and last column of PTABLE with zeroes. It then computes the row-wise medians, adds these to
the values in the last column and corresponding row, and subtracts them from the other entries in the corre-
sponding row. Similar computations are then performed for all NCOL + 1 columns. The whole procedure is
then repeated (using NROW + 1 rows) until convergence is achieved (until no changes occur), or until MAXIT
iterations are performed. Convergence is known to have occurred if ITER is less than MAXIT.
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As Emerson and Hoaglin (1983) discuss, it is not necessarily desirable to continue until convergence. If
MAXIT is set to twice the maximum of the number of rows and columns plus five, it is likely that convergence
will occur.

As Emerson and Hoaglin point out, median polish starting with rows can lead to a different fit from that
obtained by starting with columns. Although MEDPL does not make provision for choosing which dimension
to start with, TABLE can be transposed by use of routine

TRNRR (IMSL MATH/LIBRARY). Use of the transposed table in MEDPL would result in the iterations begin-
ning with the columns of the original table. Further descriptions of median polish, which was first proposed
by John Tukey, and examples of its use can be found in Tukey (1977, Chapter 11) and in Velleman and Hoag-
lin (1981, Chapter 8).

Comments

Workspace may be explicitly provided, if desired, by use of M2DPL/DM2DPL.
The reference is:

CALL M2DPL (NROW, NCOL, TABLE, LDTABL, MAXIT, PTABLE, LDPTAB, ITER, WK)
The additional argument is:
WK — Work vector of length max(NROW, NCOL).

Example

This example is taken from Emerson and Hoaglin (1983, page 168). It involves data on infant mortality in the
United States, classified by father’s education and by region of the country. In order to show the difference
between making only one polishing pass over the rows and polishing until convergence, on the first invoca-
tion MAXIT is set to one. On a second call, it is set large enough to have reasonable assurance of execution
until convergence. In the first case, the last row and column of PTABLE are printed. The values in these are
the medians before any polishing. These values approach zero as the polishing continues.

USE MEDPL_INT
USE UMACH_INT
USE WRRRL_INT

IMPLICIT NONE
INTEGER NCOL, NROW
PARAMETER (NCOL=5, NROW=4)

INTEGER ITER, LDPTAB, LDTABL, MAXIT, NOUT
REAL PTABLE (NROW+1,NCOL+1), TABLE (NROW,NCOL)
CHARACTER CLABEL(1)*5, RLABEL(1)*5

DATA CLABEL/'NONE'/

DATA RLABEL/'NONE'/

DATA TABLE/25.3, 32.1, 38.8, 25.4, 25.3, 29.0, 31.0, 21.1, 18.2, &
18.8, 19.3, 20.3, 18.3, 24.3, 15.7, 24.0, 16.3, 19.0, 16.8, &
17.5/

CALL UMACH (2, NOUT)
MAXIT =1
LDTABL = 4
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LDPTAB = 5

CALL MEDPL (TABLE, MAXIT,
CALL WRRRL ('Fitted table after one iteration over the rows',
PTABLE, CLABEL, RLABEL, FMT='(W10.4)")

MAXIT = 15

PTABLE,

ITER=ITER)

&

CALL MEDPL (TABLE, MAXIT, PTABLE, ITER=ITER)
CALL WRRRL ('%/Fitted table and marginal residuals', PTABLE, &
CLABEL, RLABEL, FMT='(W10.4)")
WRITE (NOUT,99999) ITER
99999 FORMAT (/, ' Iterations taken: ', I2)
END
Output
Fitted table after one iteration over the rows
7.0 7.0 -0.1 0.0 -2.0 18.3
7.8 4.7 -5.5 0.0 -5.3 24.3
19.5 11.7 0.0 -3.6 -2.5 19.3
4.3 0.0 -0.8 2.9 -3.6 21.1
0.0 0.0 0.0 0.0 0.0 0.0
Fitted table and marginal residuals
-1.55 0.00 0.00 -1.15 0.60 -1.45
1.55 0.00 -3.10 1.15 -0.40 2.25
10.85 4.60 0.00 -4.85 0.00 -0.35
-3.25 -6.00 0.30 2.75 0.00 0.35
8.10 6.55 -0.55 0.70 -3.05 20.20
Iterations taken: 15
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Chapter 2: Regression

il

Routines

2.1 Simple Linear Regression

Straightlinefit ........ ... ... ... . . .
Simple linear regression analysis. . .. ...................
Response control by a fitted line ... ....................
Inverse prediction by afittedline .......................

2.2 Multivariate General Linear Model Analysis

221 Model Fitting

From raw data for a single dependent variable . ...........
Fromcovariances. . . ....... ... ... . i
From raw data without classification variables. . ... ........
From raw data with classification variables ... ............
With linear equality restrictions ........................

2.2.2 Statistical Inference and Diagnostics

Summary statistics for a fitted regression ................
Variance-covariance matrix of the estimated coefficients
Construction of a completely testable hypothesis ..........
Sums of crossproducts for a multivariate hypothesis
Tests for the multivariate linear hypothesis . ..............
Test for lack of fit based on exact replicates .. ............
Test for lack of fit based on near replicates . ... ...........
Intervals and diagnostics for individual cases .............
Diagnostics for outliers and influential cases. .............

2.2.3 Utilities for Classification Variables

Getting unique values of classification variables ... .. ... ...
Generation of regressors for a general linear model

.............. RCOVB 178

................... RHPSS 190

............ RLINE 101
............ RONE 104
........... RINCF 113
........... RINPF 117
............ RLSE 122
............ RCOV 129
........... RGIVN 133
............ RGLM 143
........... RLEQU 156
........... RSTAT 166
............ CESTI 184
........... RHPTE 197
........... RLOFE 203
........... RLOFN 210
........... RCASE 219
........... ROTIN 230
........... GCLAS 237

.................. GRGLM 240
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2.3

2.4

24.1

242

2.4.3

2.5

2.6

Variable Selection

All best regressions via leaps-and-bounds algorithm .................. RBEST
StepWise regression. . ... ... RSTEP
Generalized sweep of a nonnegative definite matrix.................. GSWEP
Retrieval of a symmetric submatrix from a symmetric matrix ........... RSUBM

Polynomial Regression and Second-Order Models

Polynomial Regression Analysis
Polynomial fitof knowndegree . ........ ... ... ... .. .. .. RCURV
Polynomial regression analysis . . ............ . i i RPOLY

Second-Order Model Design
Generation of an orthogonal central composite design................ RCOMP

Utility Routines for Polynomial Models and Second-Order Models

Polynomial regression fit . .......... ... .. .. ... RFORP
Summary statistics for a fitted polynomialmodel. .. ................... RSTAP
Case statistics for a fitted polynomial model .. ....................... RCASP
Generation of orthogonal polynomials . .. ........................... OPOLY
Centering of variables and generation of crossproducts .. ............. GCSCP
Transforming coefficients for a second ordermodel .. ................. TCSCP

Nonlinear Regression Analysis
Nonlinear regression fit . . ... ... ... . . ... . . ... RNLIN

Fitting Linear Models Based on Alternative Criteria

Least absolute valueregression ... ......... ... .., RLAV
LeastLp norm regression . .......... .ttt e RLLP
Least maximum value regression .. ........... . i RLMV
Partial Least Squares Regression . . ... ............ ... .. i PLSR

245
252
261
265

270
275

282

287
294
300
307
311
317

321

334
338
350
354
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Usage Notes

Simple Linear Regression

The simple linear regression model is

yi:ﬁ0+ﬁ1xi+€i i=1,2, R

where the observed values of the y;’s constitute the responses or values of the dependent variable, the x;’s are
the settings of the independent (explanatory) variable, B and B; are the intercept and slope parameters,

respectively, and the g;s are independently distributed normal errors each with mean zero and variance a>.

Routine RLINE fits a straight line and computes summary statistics for the simple linear regression model.
There are no options with this routine.

Routine RONE analyzes a simple linear regression model. Routine RONE requires a data matrix as input. There
is an option for excluding the intercept B from the model. The variables x, y, weights (optional), and fre-

quencies (optional) must correspond to columns in this matrix. The simple linear regression model is fit,
summary statistics are computed (including a test for lack of fit), and confidence intervals and diagnostics for
individual cases are computed. There are options for printing and plotting the results.

Routines RINCF and RINPF solve the inverse regression (calibration) problem using a fitted simple linear
regression. Routines RLINE or RONE can be used to compute the fit. Routine RINCF estimates settings of the
independent variable that restrict, at a specified confidence percentage, y to a given specified range. Routine
RINPF computes a confidence interval on the setting of the independent variable for a given response y,.

Multiple Linear Regression

The multiple linear regression model is

V= ﬁ’o + ﬂlxl-l + ,Ble-z +...+ ﬁkxl-k +e i=1,2,..n

where the observed values of the y;’s constitute the responses or values of the dependent variable, the
Xi1's, Xp's, ..., x;’s are the settings of the k independent (explanatory) variables, By, By, ..., By are the regres-
sion coefficients, and the €;’s are independently distributed normal errors each with mean zero and variance

o

Routine RLSE fits the multiple linear regression model. There is an option for excluding the intercept By,
There are no other options. The responses are input in a one-dimensional array Y, and the independent vari-
ables are input in a two-dimensional array X that contains the individual cases as the rows and the variables
as the columns.

By specifying a single dependent variable, either RGIVN or RCOV can also be used to fit the multiple linear
regression. (These routines are designed to fit any number of dependent variables simultaneously. See the
section Multivariate General Linear Model.)
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Routine RGIVN fits the model using fast Givens transformations. For large data sets that cannot be stored in a
single array, RGIVN is designed to allow multiple invocations. In this case, only some of the rows from the
entire data set are input at any one time. Alternatively, the data set can be input in a single array.

Routine RCOV fits the multiple linear regression model from the sum of squares and crossproducts matrix for
the data (xq, x, ..., x, y). Routine CORVC in Chapter 3, “Correlation” can compute the required sums of squares

and crossproducts matrix for input into RCOV. Routine RORDM in Chapter 19, “Ultilities” can reorder this
matrix, if required.

Three routines in the IMSL MATH/LIBRARY can be used for fitting the multiple linear regression model.
Routine LSQRR (IMSL MATH/LIBRARY) computes the fit via the Householder QR decomposition. Routine
LSBRR (IMSL MATH/LIBRARY) computes the fit via iterative refinement. Routine LSVRR

(IMSL MATH/LIBRARY) computes the singular value decomposition of a matrix. Routines LSQRR and
LSBRR use the regressors and dependent variable as two input arrays. Routine LSVRR computes the singular
value decomposition of the matrix of regressors, from which the regression coefficients can be obtained. Ken-
nedy and Gentle (1980, section 8.1) discuss some of the computational advantages and disadvantages of the
various methods for least-squares computations.

No Intercept Model

Several routines provide the option for excluding the intercept from a model. In most practical applications,
the intercept should be included in the model. For routines that use the sums of squares and crossproducts
matrix as input, the no-intercept case can be handled by using the raw sums of squares and crossproducts
matrix as input in place of the corrected sums of squares and crossproducts. The raw sum of squares and

crossproducts matrix can be computed as(xq, x5, ..., Xx, y)T(xl, Xy, ..., X, i) using the matrix multiplication
routine MXTXF (IMSL MATH/LIBRARY).

Variable Selection

Variable selection can be performed by RBEST, which does all best subset regressions, or by RSTEP, which
does stepwise regression. In either case, the sum of squares and crossproducts matrix must first be formed.
The method used by RBEST is generally preferred over that used by RSTEP because RBEST implicitly exam-
ines all possible models in the search for a model that optimizes some criterion while stepwise does not
examine all possible models. However, the computer time and memory requirements for RBEST can be much
greater than that for RSTEP when the number of candidate variables is large.

Two utility routines GSWEP and RSUBM are provided also for variable selection. Routine GSWEP performs a
generalized sweep of a nonnegative define matrix. Routine RSUBM can be invoked after either GSWEP or
RSTEP in order to extract the symmetric submatrix whose rows and columns have been swept, i.e., whose
rows and columns have entered the stepwise model. Routines GSWEP and RSUBM can be invoked prior to
RBEST in order to force certain variables into all the models considered by RBEST.
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Polynomial Model

The polynomial model is

2 k .
V=B, Tt Byxi H X te i=1,2, L, n

where the observed values of the y;’s constitute the responses or values of the dependent variable, the x;’s are
the settings of the independent (explanatory) variables, By, By, ..., By are the regression coefficients, and the

&;'s are independently distributed normal errors each with mean zero and variance o>

Routine RCURYV fits a specified degree polynomial. Routine RPOLY determines the degree polynomial to fit
and analyzes this model. If only a decomposition of sum of squares for first, second, ..., k-th degree effects in
a polynomial model is required, either RCURV or the service routine RFORP can be used to compute this
decomposition. The other service routines (RSTAP, RCASP, OPOLY) can be used to perform other parts of the
full analysis.

Multivariate General Linear Model

Routines for the multivariate general linear model use the model
Y=XB+¢

where Y is the n X g matrix of responses, X is the n X p matrix of regressors, B is the p X g matrix of regres-
sion coefficients, and ¢ is the n X g matrix of errors whose g-dimensional rows are identically and
independently distributed multivariate normal with mean vector 0 and variance-covariance matrix 2.

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification variables. Typically, multiple
regression models use continuous variables, whereas analysis of variance models use classification variables.
Although the notation used to specify analysis of variance models and multiple regression models may look
quite different, the models are essentially the same. The term general linear model emphasizes that a common
notational scheme is used for specifying a model that may contain both continuous and classification
variables.

A general linear model is specified by its effects (sources of variation). We refer to an effect as a single vari-
able or a product of variables. (The term effect is often used in a narrower sense, referring only to a single
regression coefficient.) In particular, an effect is composed of one of the following:

1. asingle continuous variable
a single classification variable
several different classification variables

several continuous variables, some of which may be the same

U N

continuous variables, some of which may be the same, and classification variables, which must be
distinct
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Effects of the first type are common in multiple regression models. Effects of the second type appear as main
effects in analysis of variance models. Effects of the third type appear as interactions in analysis of variance
models. Effects of the fourth type appear in polynomial models and response surface models as powers and
crossproducts of some basic variables. Effects of the fifth type appear in one-way analysis of covariance mod-
els as regression coefficients that indicate lack of parallelism of a regression function across the groups.

The specification of a general linear model is through arguments INTCEP, NCLVAR, INDCL, NEF, NVEF, and
INDEF, whose meanings are as follows:

INTCEP — Intercept option. (Input)
INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.
NCLVAR — Number of classification variables. (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification vari-
ables. (Input)

NEF — Number of effects (sources of variation) in the model excluding error. (Input)

NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.
(Input)

INDEF — Index vector of length NVEF(1) + NVEF(2) + ... + NVEF(NEF). (Input)

The first NVEF(1) elements give the column numbers of X for each variable in the first effect; the next NVEF(2)
elements give the column numbers for each variable in the second effect; and so on. The last NVEF(NEF) ele-
ments give the column numbers for each variable in the last effect.

Suppose the data matrix has as its first 4 columns two continuous variables in columns 1 and 2 and two clas-
sification variables in columns 3 and 4. The data might appear as follows:

Column | | Column 2 | Column 3 | Column 4
11.23 1.23 1.0 5.0
12.12 2.34 1.0 4.0
12.34 1.23 1.0 4.0
4.34 2.21 1.0 5.0
5.67 4.31 2.0 4.0
412 5.34 2.0 1.0
4.89 9.31 2.0 1.0
9.12 3.71 2.0 1.0

Each distinct value of a classification variable determines a level. The classification variable in column 3 has
two levels. The classification variable in column 4 has three levels. (Integer values are recommended, but not
required, for values of the classification variables. If real numbers are used, the values of the classification
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variables corresponding to the same level must be identical.) Some examples of regression functions and
their specifications are as follows:

INTCEP NCLVAR INDCL NEF NVEF INDEF
Bo +B1x1 1 0 1 1 1
Bo + Byxy+ Boxy? 1 0 2 1,2 1,1,1
M+ 0 1 1 3 1 1 3
M+o+ B+ 1 2 3,4 3 1,12 | 3434
M jj 0 2 34 1 2 34
Bo + B1xq + Boxp + Baxyxo 1 0 3 112 | 1212
M+ o+ By + By 1 1 3 3 1,12 31,13

Routines for Fitting the Model

Routine RGLM fits a multivariate general linear model. If the data set is too large to be stored in a single array,
RGLM is designed so that multiple invocations can be made. In this case, one or more rows of the entire data
set can be input at each invocation. Alternatively, the data set can be input all at once in a single array. Index
vectors are used to specify the column numbers of the data matrix used as classification variables, effects,
and dependent variables. This is useful if several models with different effects need to be fit from the same
data matrix.

Routine RLEQU can be called after RGIVN or RGLM to impose linear equality restrictions AB = Z on the regres-
sion parameters. RLEQU checks consistency of the restrictions. Routine RLEQU is useful for fitting spline
functions where restrictions on the regression parameters arise from continuity and differentiability condi-
tions on the regression function.

Routine RLEQU can be used to test the multivariate general linear hypothesis AB = Z by fitting the restricted
model after the full model is fit. The additional degrees of freedom for error (and the additional sum of
squares and crossproducts for error) gained in the restricted model can be used for computing a test statistic.
However, a more efficient approach for computing the sum of squares and crossproducts for a multivariate
general linear hypothesis is provided by RHPSS. See the next section entitled “Multivariate General Linear
Hypothesis” for a brief description of the problem and related routines.

Two utility routines GCLAS and GRGLM are provided to determine the values of the classification variables
and then to use those values and the specified general linear model to generate the regressors in the model.
These routines would not be required if you use RGLM to fit the model since RGLM does this automatically.
However, if other routines in this chapter are used that require the actual regressors and not the classification
variables, then these routines could be used.
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Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—sometimes by design and some-
times by accident. The routines in this chapter are designed to handle linear dependence of the regressors,
i.e., the n X p matrix X (the matrix of regressors) in the general linear model can have rank less than p. Often,
the models are referred to as nonfull rank models.

As discussed in Searle (1971, Chapter 5) some care must be taken to use correctly the results of the fitted non-
full rank regression model for estimation and hypothesis testing. In the nonfull rank case, not all linear
combinations of the regression coefficients can be estimated. Those linear combinations that can be estimated
are called “estimable functions.” If routines in this chapter are used to attempt to estimate linear combina-
tions that cannot be estimated, error messages are issued. A good general discussion of estimable functions is
given by Searle (1971, pages 180-188).

The check used by routines in this chapter for linear dependence is sequential. The j-th regressor is declared
linearly dependent on the preceding j - 1 regressors if

\/1 - R?-l,z,...j—l

is less than or equal to TOL. Here, R; .1 5, ... j_1 is the multiple correlation coefficient of the j-th regressor
with the first j - 1 regressors. Also, TOL is a tolerance that must be input by the user. When a routine declares
the j-th regressor to be linearly dependent on the first j - 1 regressors, the j-th regression coefficient is set to
zero. Essentially, this removes the j-th regressor from the model.

The reason a sequential check is used is that frequently practitioners include the variables that they prefer to
remain in the model first. Also, the sequential check is based on many of the computations already per-
formed as this does not degrade the overall efficiency of the routines. There is no perfect test for linear
dependence when finite precision arithmetic is used. The input of the tolerance TOL allows the user some
control over the check for linear dependence. If you know your model is full rank, you can input TOL = 0.0.
However, generally TOL should be input as approximately 100 times the machine epsilon. The machine epsi-
lon is AMACH(4) in single precision and DMACH(4) in double precision. (See routines AMACH and DMACH in
Reference Material)

Routines in this chapter performing least squares are based on QR decomposition of X or on a Cholesky fac-

torization R'R of XTX. Maindonald (1984, chapters 1-5) discusses these methods extensively. The R matrix
used by the regression routines is taken to be a p X p upper triangular matrix, i.e., all elements below the
diagonal are zero. The signs of the diagonal elements of R are used as indicators of linearly dependent regres-
sors and as indicators of parameter restrictions imposed by fitting a restricted model. The rows of R can be
partitioned into three classes by the sign of the corresponding diagonal element:

1. A positive diagonal element means the row corresponds to data.

2. Anegative diagonal element means the row corresponds to a linearly independent restriction imposed
on the regression parameters by AB = Z in a restricted model.

3. A zero diagonal element means a linear dependence of the regressors was declared. The regression

coefficients in the corresponding row of B are set to zero. This represents an arbitrary restriction which
is imposed to obtain a solution for the regression coefficients. The elements of the corresponding row
of R are also set to zero.
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Multivariate General Linear Hypothesis

Routine RHPSS computes the matrix of sums of squares and crossproducts for the general linear hypothesis
H B U = G for the multivariate general linear model Y = XB + € with possible linear equality restrictions

AB = Z. The R matrix and B from the routines that fit the model are required for input to RHPSS.

The rows of H must be linear combinations of the rows of R, i.e., H B = G must be completely testable. If the
hypothesis is not completely testable, routine CESTI can be used to construct an equivalent completely test-
able hypothesis.

Routine RHPTE computes several test statistics and approximate p-values for the multivariate general linear
hypothesis. The test statistics computed included are Wilks” lambda, Roy’s maximum root, Hotelling’s trace,
and Pillai’s trace. Seber (1984, pages 409-416) and Morrison (1976, pages 222-224) discuss the procedures
and compare the test statistics. The error sum of squares and crossproducts matrix (SCPE) output from the fit
of the model is required for input to RHPTE. In addition, the hypothesis sum of squares and crossproducts
matrix (SCPH), which can be computed using RHPSS, is required for input to RHPTE.

Nonlinear Regression Model

The nonlinear regression model is

yl.=f<xl~;9> +e i=1,2, ...,n

where the observed values of the y;’s constitute the responses or values of the dependent variable, the x;’s are
the known vectors of values of the independent (explanatory) variables, f is a known function of an unknown
regression parameter vector 0, and the €;’s are independently distributed normal errors each with mean zero

and variance 2.

Routine RNLIN performs the least-squares fit to the data for this model. The routine RCOVB can be used to
compute the large sample variance-covariance matrix of the estimated nonlinear regression parameters from
the output of RNLIN.

Weighted Least Squares

Routines throughout the chapter generally allow weights to be assigned to the observations. The argument
IWT is used throughout to specify the weighting option. (IWT = 0 means ordinary least squares; a positive
IWT means weighted least squares with weights in column IWT of the data set.) All of the weights must be
nonnegative. For routines requiring a sum of squares and crossproducts matrix for input, a weighted analy-
sis can be performed by using as input a weighted sum of squares and crossproducts matrix. Routine CORVC
in Chapter 3, "Correlation” can compute the required weighted sum of squares and crossproducts matrix.

Computations that relate to statistical inference, e.g., t tests, F tests, and confidence intervals, are based on the
multiple regression model except that the variance of &; is assumed to equal 02 (or X in the multivariate case)
times the reciprocal of the corresponding weight.
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If a single row of the data matrix corresponds to 7; observations, the argument IFRQ can be used to specify
the frequency option. IFRQ = 0 means that for all rows, #; = 1; a positive IFRQ means the frequencies are

entered into column IFRQ of the data matrix. Degrees of freedom for error are affected by frequencies, but
are unaffected by weights.

Summary Statistics

Summary statistics for a single dependent variable are computed by several routines in the regression chap-
ter. The routines RONE, RLSE, RSTEP, and RPOLY output some summary statistics with the fit of the model.
For additional summary statistics, the routines RSTAT and RSTAP can be used.

Routine RSTAT can be used to compute and print statistics related to a regression for each of the g4 dependent
variables fitted by RGIVN, RGLM, RLEQU, or RCOV. Routine RSTAT computes summary statistics that include
the model analysis of variance table, sequential sums of squares and

F-statistics, coefficient estimates, estimated standard errors, f-statistics, variance inflation factors, and esti-
mated variance-covariance matrix of the estimated regression coefficients. If only the variance-covariance
matrix of the estimated regression coefficients in needed, routine RCOVB can be used.

The summary statistics are computed under the model y = X B + €, where y is the n X 1 vector of responses, X
is the n X p matrix of regressors with rank(X) =, B is the p X 1 vector of regression coefficients, and ¢ is the
n X 1 vector of errors whose elements are independently normally distributed with mean 0 and variance

0'2/wi.

Given the results of a weighted least-squares fit of this model (with the w;’s as the weights), most of the com-
puted summary statistics are output in the following variables:

AOQOV — a one-dimensional array usually of length 15. In RSTEP, A0V is of length 13 because the last two ele-
ments of the array cannot be computed from the input. The array contains statistics related to the analysis of
variance. The sources of variation examined are the regression, error, and total. The first 10 elements of A0V
and the notation frequently used for these is described in the following table:

Model Analysis of Variance Table

Source of Degrees of Sum of Mean Square F p-value
Variation Freedom Squares

Regression DFR=20v(1) SSR=a0v(4) MSR=a0v(7) A0V(9) 2a0v(10)
Error DFE=a0v(2) SSE=a0v(5) g 2_ A0V(8)

Total DFT=a0v(3) SST=a0v(6)

In the case an intercept is indicated (INTCEP = 1), the total sum of squares is the sum of squares of the devia-
tions of y; from its (weighted) mean

y

— the so-called corrected total sum of squares, it is denoted by
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n
SST = Zw,( v, —;)2
i=1

In the case an intercept is not indicated (INTCEP = 0), the total sum of squares is the sum of squares of y; —
the so-called corrected total sum of squares, it is denoted by

n
SST = Zwiy?
i=1

The error sum of squares is given by

n
SSE = Zwi<yi - 3\’,')2
i=1

The error degrees of freedom is defined by

DFE=n-r
The estimate of 02 is given by
s? = SSE/DFE
which is the error mean square.
The computed F statistic for the null hypothesis Hy : 1 = B, = ... = By = 0 versus the alternative that at least
one coefficient is nonzero is given by
F = MSR/s?

The p-value associated with the test is the probability of an F larger than that computed under the assump-
tion of the model and the null hypothesis. A small p-value (less that 0.05) is customarily used to indicate that
there is sufficient evidence from the data to reject the null hypothesis.

The remaining 5 elements in AOV frequently are displayed together with the actual analysis of variance table.
The quantities R-squared (R? = nov(11)) and adjusted R-squared

R =A0V(12)
are expressed as a percentage and are defined by

R? = 100(SSR/SST) = 100(1 - SSE/SST)

2
2 _ _ S
R, = 100max{0,1 SST/DET }

The square root of s2(s = A0V(13)) is frequently referred to as the estimated standard deviation of the model
error.
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The overall mean of the responses

<

is output in (A0V(14)).

The coefficient of variation (CV = A0V(15)) is expressed as a percentage and is defined by

CV =100s/7
COEF — a two dimensional array containing the regression coefficient vector

A

B

as one column and associated statistics (including the estimated standard error, ¢ statistic and p-value) in the
remaining columns.

SQSS — a two dimensional array containing sequential sums of squares as one column and associated sta-
tistics (including degrees of freedom, F statistic, and p-value) in the remaining columns.

COVB — the estimated variance-covariance matrix of the estimated regression coefficients.

Tests for Lack of Fit

Tests for lack of fit are computed for simple linear regression by RONE, for the polynomial regression by rou-
tines RPOLY and RSTAP and for multiple regression by routines RLOFE and RLOFN.

In the case of polynomial regression, the two-dimensional output array TLOF contains the lack of fit F tests
for each degree polynomial 1, 2, ..., k, that is fit to the data. These tests are useful for indicating the degree of
the polynomial required to fit the data well.

In the case of simple and multiple regression, the one-dimensional output array TESTLF of length 10 con-
tains the analysis of variance table for the test of lack of fit. Two routines RLOFE and RLOFN can be used to
compute a test for lack of fit. Routine RLOFE requires exact replicates of the independent variables, i.e., there
must be at least two cases in the data set that have the same settings of all the independent variables, while
RLOFN does not require exact replicates. Customarily, one would require there to be several sets of duplicate
settings of the independent variables in order to use RLOFE.

For RLOFE, the 10 elements of TESTLF and the notation frequently used for these is described in the follow-

ing table:
Lack of Fit Analysis of Variance Table
Source of Degrees of Sum of Squares |Mean Square |F p-value
Variation Freedom
Lack of Fit TESTLF(1) TESTLF(4) TESTLF(7) TESTLF(9) TESTLF(10)
Error DFPE = TESTLF(2) |SSPE = TESTLF(5) | TESTLF(8)
Pure Error DFE = TESTLF(3) |SSE = TESTLF(6)

= ROQQ?WQ\{EF Usage Notes Chapter 2: Regression 96



For RLOFN, the 10 elements of TESTLF are similar to those in the previous table. However, since there may
not be exact replicates in the data, the data are grouped into sets of near replicates. Then, instead of comput-
ing a pure error (or within) sum of squares using a one-way analysis of variance model, an expanded one-
way analysis of covariance model using the clusters of near replicates as the groups is computed. The error
from this expanded model replaces the pure error in the preceding table in order to compute an exact F test
for lack of fit conditional on the selected clusters.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by several routines in the regression chapter.
Routines RONE, and RPOLY output diagnostics for individual cases with the fit. If the fit of the model is done
by other routines, RCASE and RCASP can be used to compute the diagostics.

Routine RCASE computes confidence intervals and diagnostics for individual cases in the data matrix. The
cases can be stored in a single data matrix or multiple invocations can be made in which one or more rows of
the entire data set are input at any one time. Statistics computed by RCASE include predicted values, confi-
dence intervals, and diagnostics for detecting outliers and cases that greatly influence the fitted regression.

If not all of the statistics computed by RCASE are needed, ROTIN can be used to obtain some of the statistics.
The diagnostics are computed under the model y = X B + €, where y is the n X 1 vector of responses, X is the

n X p matrix of regressors with rank(X) = r, B is the p X 1 vector of regression coefficients, and € is the n X 1

vector of errors whose elements are independently normally distributed with mean 0 and variance 2/ w;.

Given the results of a weighted least-squares fit of this model (with the w;’s as the weights), the following five

diagnostics are computed: (1) leverage, (2) standardized residual, (3) jackknife residual, (4) Cook’s distance,
and (5) DFFITS. These diagnostics are stored in the FORTRAN matrix CASE. The definition of these terms is
given in the discussion that follows:

Let x; be a column vector containing the elements of the i-th row of X. A case could be unusual either because
of x; or because of the response y;. The leverage h; is a measure of unusualness of the x;. The leverage is defined

by
h;, = [xiT<XTWX>xl-]w,-

where W = diag(wq, wy, ..., w,) and (XTW X)~ denotes a generalized inverse of XTWX. The average value of
the s is r/n. Regression routines declare x; unusual if /1; > 2r/n. A row label X is printed beside a case that is
unusual because of of x;. Hoaglin and Welsch (1978) call a data point highly influential (i.e., a leverage point)
when this occurs.

Let e; denote the residual

yi_)A’l'

for the i-th case. The estimated variance of e; is (1 - /;)s?>/w; where s is the residual mean square from the fit-
ted regression. The i-th standardized residual (also called the internally studentized residual) is by definition
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”‘%hxl—m>

and 7; follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between y; and its predicted value based on
the data set in which the i-th case is deleted. This difference equals ¢;/(1 - h;). The jackknife residual is

obtained by standardizing this difference. The residual mean square for the regression in which the i-th case
is deleted is

n—r Sz—wl-e?/ 1 —h;
(n=1) (1=h)

n—r—1

f= e |
”ﬂwo—@

and ¢; follows a t distribution with n - r - 1 degrees of freedom. The regression routines declare y; unusual

2=

The jackknife residual is defined to be

(an outlier) if a jackknife residual greater than 2.0 in absolute value is computed. A row label Y is printed
beside a case that is unusual because of ;.

Cook’s distance for the i-th case is a measure of how much an individual case affects the estimated regression
coefficients. It is given as

D. = thﬂ%

' rs2<],—-hi>2
Weisberg (1985) states that if D; exceeds the 50-th percentile of the F(r, n - r) distribution, it should be consid-
ered large. (This value is about 1. This statistic does not have an F distribution.)

DEFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, DFFITS is computed by the
formula

DFFITSI =€

Hoaglin and Welsch (1978) suggest that DFFITS,; is greater than

2Nr/n

is large.
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Transformations

Transformations of the independent variables are sometimes useful in order to satisfy the regression model.
The inclusion of squares and crossproducts of the variables

2 .2
X1, X2, X1, X2, X1Xp

is often needed. Logarithms of the independent variables are also often used. (See Draper and Smith, 1981,
pages 218-222, Box and Tidwell, 1962, Atkinson, 1985, pages 177-180, Cook and Weisberg, 1982, pages
78-86.)

When the responses are described by a nonlinear function of the parameters, a transformation of the model
equation can often be selected so that the transformed model is linear in the regression parameters. For
example, the exponential model

Bothx
_ S0P,

by taking natural logarithms on both sides of the equation, can be transformed to a model that satisfies the
linear regression model provided the &;s have a log normal distribution (Draper and Smith, pages 222-225).

When the responses are nonnormal and their distribution is known, a transformation of the responses can
often be selected so that the transformed responses closely satisfy the regression model assumptions. The
square root transformation for counts with a Poisson distribution and the arc-sine transformation for bino-
mial proportions are common examples (Snedecor and Cochran, 1967, pages 325-330, Draper and Smith,
pages 237-239).

If the distribution of the responses is not known, the data can be used to select a transformation so that the
transformed responses may more closely obey the regression model. For a positive response variable y > 0,
the family of power transformations indexed by A

Aoy
o —— if 10
Iny ifi=0

and generalizations of this family are useful. Routine BCTR (See Chapter 8, “Time Series Analysis and Forecast-
ing”) can be used to perform the transformation. A method to estimate and to compute an approximate test
for A = 1is given by Atkinson (1973). Also, Atkinson (1986) discusses transformation deletion statistics for
computing the estimate and test leaving out a single observation since the evidence for a transformation of
the response may sometimes depend crucially on one or a few observations.

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are normally distributed, e.g., a
least-squares solution produces maximum likelihood estimates of the regression parameters. However, when
errors are not normally distributed, least squares may yield poor estimators. The least absolute value (LAV,
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L) criterion yields the maximum likelihood estimate when the errors follow a Laplace distribution. Routine

RLAV is often used when the errors have a heavy tailed distribution or when a fit is needed that is resistant to
outliers.

A more general approach, minimizing the Lp norm (p = 1), is given by routine RLLP. Although the routine
requires about 30 times the CPU time for the case p = 1 than would the use of RLAV, the generality of RLLP
allows the user to try several choices for p > 1 by simply changing the input value of p in the calling pro-
gram. The CPU time decreases as p gets larger. Generally, choices of p between 1 and 2 are of interest.
However, the L, norm solution for values of p larger than 2 can also be computed.

The minimax (LMYV, L, Chebyshev) criterion is used by RLMV. Its estimates are very sensitive to outliers,
however, the minimax estimators are quite efficient if the errors are uniformly distributed.

Routine PLSR provides a fourth alternative useful when there are many inter-related regression variables
and relatively few observations. PLSR finds linear combinations of the predictor variables that have highest
covariance with Y.

Missing Values

NaN (not a number) is the missing value code used by the regression routines. Use function AMACH(6) (or
function DMACH(6) with double precision regression routines) to retrieve NaN. (See the section Machine-
Dependent Constants in Reference Material.) Any element of the data matrix that is missing must be set to
AMACH(6) (or DMACH(6) for double precision). In fitting regression models, any row of the data matrix con-
taining NaN for the independent, dependent, weight, or frequency variables is omitted from the
computation of the regression parameters.

Often predicted values and confidence intervals are desired for combinations of settings of the independent
variables not used in computing the regression fit. This can be accomplished by including additional rows in
the data matrix. These additional rows should contain the desired settings of the independent variables
along with the responses set equal to NaN. The cases with NaN will not be used in determining the estimates
of the regression parameters, and a predicted value and confidence interval will be computed from the given
settings of the independent variables.
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RLINE

Fits a line to a set of data points using least squares.

Required Arguments

XDATA — Vector of length NOBS containing the x-values. (Input)
YDATA — Vector of length NOBS containing the y-values. (Input)
B0 — Estimated intercept of the fitted line. (Output)

B1 — Estimated slope of the fitted line. (Output)

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (XDATA,1).

STAT — Vector of length 12 containing the statistics described below. (Output)
STAT(I)

Mean of XDATA

Mean of YDATA

Sample variance of XDATA

Sample variance of YDATA

Correlation

Estimated standard error of BO

Estimated standard error of B1

Degrees of freedom for regression

© © N o Ul ol W N = H

Sum of squares for regression

[y
o

Degrees of freedom for error

—_
—

Sum of squares for error

—_
N

Number of (x, y) points containing NaN (not a number) as either the
x or y value

FORTRAN 90 Interface

Generic: CALL RLINE (XDATA, YDATA, BO,B1 [,...]1)
Specific: The specific interface names are S_RLINE and D_RLINE.

FORTRAN 77 Interface

Single: CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)
Double: The double precision name is DRLINE.
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Description

Routine RLINE fits a line to a set of (x, y) data points using the method of least squares. Draper and Smith
(1981, pages 1-69) discuss the method. The fitted model is

JA’:ﬂo"i'ﬂ]x

where S, (stored in B0) is the estimated intercept and S, (stored in B1) is the estimated slope. In addition to
the fit, RLINE produces some summary statistics, including the means, sample variances, correlation, and the

error (residual) sum of squares. The estimated standard errors of B and B are computed under the simple
linear regression model. The errors in the model are assumed to be uncorrelated and with constant variance.

If the x values are all equal, the model is degenerate. In this case, RLINE sets B, to zero and B, to the mean of
the y values.

Comments

Informational error

Type Code Description
4 1 Each (x, y) point contains NaN (not a number). There are no valid data.
Example

This example fits a line to a set of data discussed by Draper and Smith (1981, Table 1.1, pages 9-33). The
response ¥ is the amount of steam used per month (in pounds), and the independent variable x is the average
atmospheric temperature (in degrees Fahrenheit).

USE RLINE_INT
USE UMACH_INT
USE WRRRL_INT

IMPLICIT NONE
INTEGER NOBS
PARAMETER (NOBS=25)

INTEGER NOUT
REAL BO, B1l, STAT(12), XDATA(NOBS), YDATA (NOBS)
CHARACTER CLABEL(13)*15, RLABEL(1) *4

DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7, &
57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0, &
74.5, 72.1, 58.1, 44.6, 33.4, 28.6/

DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5, &
7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09, &
8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/

DATA RLABEL/'NONE'/, CLABEL/' ', 'Mean of X', 'Mean of Y',6 &
'Variance X', 'Variance Y', 'Corr.', 'Std. Err. BO', &
'Std. Err. B1', 'DF Reg.', 'SS Reg.', 'DF Error', &
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'SS Error', 'Pts. with NaN'/

CALL RLINE (XDATA, YDATA, BO, Bl, STAT=STAT)

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) BO, Bl
99999 FORMAT (' BO = ', F7.2, ' Bl = ', F9.5)
CALL WRRRL ('$%/STAT', STAT, RLABEL, CLABEL, 1, 12, 1, &
FMT="' (12w10.4) ")

END
Output
BO = 13.62 Bl = -0.07983
STAT
Mean of X Mean of Y Variance X Variance Y Corr. Std. Err. BO
52.6 9.424 298.1 2.659 -0.8452 0.5815
Std. Err. Bl DF Reg. SS Reg. DF Error SS Error Pts. with NaN
0.01052 1 45.59 23 18.22 0
14.0
12.0 — N
- LN ¥
= 10.0 —
B o
O -
—
£ a
= 8.0 4
E —
6.0 —
4-0 | | | | 1 | | | 1 I I | I LI | L | |
0.0 20.0 40.0 60.0 80.0 100.0
Temperature (°F)
Figure 2.1 — Plot of the Data and the Least Squares Line
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RONE

Analyzes a simple linear regression model.

Required Arguments

X — NOBS by NCOL matrix containing the data. (Input)
IRSP — Column number IRSP of X contains the data for the response (dependent) variable. (Input)

IND — Column number IND of X contains the data for the independent (explanatory) variable. (Input)

AOV — Vector of length 15 containing statistics relating to the analysis of variance. (Output)

© ® N o G A W N = H

—_ =
= o

Juy
N

13
14
15

AOV(I)

Degrees of freedom for regression
Degrees of freedom for error
Total degrees of freedom

Sum of squares for regression
Sum of squares for error

Total sum of squares

Regression mean square

Error mean square

F-statistic

p-value
R? (in percent)

Adjusted R? (in percent)
Estimated standard deviation of the model error
Mean of the response (dependent) variable

Coefficient of variation (in percent)

If INTCEP = 1, the regression and total are corrected for the mean. If INTCEP = 0, the regression and total
are not corrected for the mean, and 20V(14) and A0V(15) are set to NaN (not a number).

COEF — INTCEP + 1 by 5 matrix containing statistics relating the regression coefficients. (Output)
If INTCEP = 1, the first row corresponds to the intercept. Row INTCEP + 1 corresponds to the coeffi-
cient for the slope. The statistics in the columns are

Col.

g &= W N =

Description

Coefficient estimate

Estimated standard error of the coefficient estimate
t-statistic for the test that the coefficient is zero
p-value for the two-sided t test

Variance inflation factor
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COVB — INTCEP + 1 by INTCEP + 1 matrix that is the estimated variance-covariance matrix of the esti-
mated regression coefficients. (Output)

TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the model. (Output)

Elem

O 0 NI N Gk N

—
(e}

If there are no replicates in the data set, a test for lack of fit cannot be performed. In this case, elements 7, §,
9, and 10 of TESTLF are set to NaN (not a number).

CASE — NOBS by 12 matrix containing case statistics. (Output)

Description
Degrees of freedom for lack of fit

Degrees of freedom for pure error

Degrees of freedom for error (TESTLF(1) + TESTLF(2))

Sum of squares for lack of fit
Sum of squares for pure error
Sum of squares for error
Mean square for lack of fit
Mean square for pure error

F statistic

p-value

Columns 1 through 12 contain the following;:

Col.

DS TN NI TR ORI SR \C R

8
9,10
11,12

Description

Observed response

Predicted response

Residual

Leverage

Standardized residual

Jackknife residual

Cook’s distance

DFFITS

Confidence interval on the mean

Prediction interval

Optional Arguments
NOBS — Number of observations. (Input)
Default: NOBS = size (X,1).

NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.

(Input)

Default: LDX = size (X,1).
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INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.

1 An intercept is in the model.

IFRQ — Frequency option. (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the
frequencies. If X(I, IFRQ) = 0.0, none of the remaining elements of row I of X are referenced, and
updating of statistics is skipped for row I.
Default: IFRQ = 0.

IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the
weights.
Default: IWT = 0.

IPRED — Prediction interval option. (Input)
IPRED = (0 means that prediction intervals are computed for a single future response. For positive
IPRED, a prediction interval is computed on the average of future responses, and column number
IPRED of X contains the number of future responses in each average.
Default: IPRED =0.

CONPCM — Confidence level for two-sided interval estimates on the mean, in percent. (Input)
CONPCM percent confidence intervals are computed, hence, CONPCM must be greater than or equal to
0.0 and less than 100.0. CONPCM often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence
level ONECL, where ONECL is greater than or equal to 50.0 and less than 100.0, set
CONPCM = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPCM = 95.0.

CONPCP — Confidence level for two-sided prediction intervals, in percent. (Input)
CONPCP percent prediction intervals are computed, hence, CONPCP must be greater than or equal to
0.0 and less than 100.0. CONPCP often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence
level ONECL, where ONECL is greater than or equal to 50.0 and less than 100.0, set
CONPCP = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPCP = 95.0.
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IPRINT — Printing option. (Input)
Default: IPRINT = 0.

IPRINT Action

0 No printing is performed.

1 AOV, COEF, TESTLF, and unusual rows of CASE are printed.

2 AOV, COEF, TESTLF, and unusual rows of CASE are printed. A plot

of the data with the regression line is printed.

3 All printing is performed. A plot of the data with the regression
line, a plot of the standardized residuals versus the independent
variable, and a half-normal probability plot of the standardized
residuals are printed.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCOEF = size (COEF,1).

LDCOVB — Leading dimension of COVB exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCOVB = size (COVB,1).

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCASE = size (CASE,1).

NRMISS — Number of rows of data encountered containing missing values for the independent, depen-
dent, weight, or frequency variables. (Output)
NaN (not a number) is used as the missing value code. Any row of X containing NaN as a value of the
independent, dependent, weight, or frequency variables is omitted from the computations for fitting
the model.

FORTRAN 90 Interface

Generic: CALL RONE (X, IRSP, IND, AOV, COEF, COVB, TESTLF, CASE [, ...])
Specific: The specific interface names are S_RONE and D_RONE.

FORTRAN 77 Interface
Single: CALL RONE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, IFRQ, IWT, IPRED, CONPCM,
CONPCP, IPRINT, AOV, COEF, LDCOEF, COVB, LDCOVB, TESTLF, CASE, LDCASE, NRMISS)
Double: The double precision name is DRONE.

Description

Routine RONE performs an analysis for the simple linear regression model. In addition to the fit, summary
statistics (analysis of variance, f tests, lack-of-fit test), and confidence intervals and diagnostics for individual
cases are computed. With the printing option, diagnostic plots can also be produced. Draper and Smith (1981,
chapter 1) give formulas for many of the statistics computed by RONE. For definitions of the case diagnostics
(stored in CASE), see the “Usage Notes” of this chapter.
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Comments

1. Workspace may be explicitly provided, if desired, by use of R2NE/DR2NE. The reference is:

CALL R2NE (NOBS, NCOL, X, LDX, INTCEP, IRSP, IND, IFRQ, IWT, IPRED, CONPCM, CONPCP,
IPRINT, AOV, COEF, LDCOEF, COVB, LDCOVB, TESTLF, CASE, LDCASE, NRMISS, IWK, WK)

The additional arguments are as follows:
IWK — Work vector of length NOBS.
WK — Work vector of length 3 * NOBS.
2. Informational errors

Type Code Description
3 5 CONPCM is less than 50.0. Confidence percentages commonly used are
90.0, 95.0, and 99.0.
3 6 CONPCP is less than 50.0. Confidence percentages commonly used are
90.0, 95.0, and 99.0.
4 1 Negative weight encountered.
4 2 Negative frequency encountered.
4 7 Each row of X contains NaN.
Examples
Example 1

This example fits a line to a set of data discussed by Draper and Smith (1981, pages 9-33). The response y is
the amount of steam used per month (in pounds), and the independent variable x is the average atmospheric
temperature (in degrees Fahrenheit). The IPRINT = 1 option is selected. Hence, plots are not produced and
only unusual cases are printed. Note in the case analysis, with the default page width, the observation num-
ber and the associated 12 statistics require two lines of output. (Routine PGOPT, Chapter 19, "Utilities”, can be

invoked to increase

the page width to put all 12 statistics on the same line.) Also note that observation 11 is

labeled with a “Y” to indicate an unusual y (response). The residual for this case is about 2 standard devia-

tions from zero.

USE RONE_INT

IMPLICIT
INTEGER
INTEGER
PARAMETER

INTEGER
REAL

DATA (
DATA (
DATA (
DATA (

NONE

INTCEP, LDCASE, LDCOEF, LDCOVB, LDX, NCOEF, NCOL, NOBS

J

(NOBS=25, LDX=25, LDCASE=25, INTCEP=1, NCOEF=INTCEP+1l, &
LDCOEF=NCOEF, LDCOVB=NCOEF, NCOL=2)

IND, IPRINT, IRSP, NRMISS
AOV(15), CASE(LDCASE,12), COEF(LDCOEF,5), CONPCP, &
COVB (LDCOVB, NCOEF) , TESTLF (10), X(LDX,NCOL)

J),J=1,2) /35.3, 10.98/
J),J=1,2) /29.7, 11.13/
J),J=1,2) /30.8, 12.51/
J),Jd=1,2) /58.8, 8.40/
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DATA (X(5,J),J0=1,2) /6l1.4, 9.27/
DATA (X(6,J),d=1,2) /71.3, 8.73/
DATA (X(7,J),d=1,2) /74.4, 6.36/
DATA (X(8,J),d=1,2) /76.7, 8.50/
DATA (X(9,J),J=1,2) /70.7, 7.82/
DATA (X(10,J),d=1,2) /57.5, 9.14/
DATA (X(11,J),J=1,2) /46.4, 8.24/
DATA (X(12,J),d=1,2) /28.9, 12.19/
DATA (X(13,J),d=1,2) /28.1, 11.88/
DATA (X(14,J),d=1,2) /39.1, 9.57/
DATA (X(15,J),J=1,2) /46.8, 10.94/
DATA (X(16,J),J=1,2) /48.5, 9.58/
DATA (X(17,J),d=1,2) /59.3, 10.09/
DATA (X(18,J),d=1,2) /70.0, 8.11/
DATA (X(19,J),d=1,2) /70.0, 6.83/
DATA (X(20,J),d=1,2) /74.5, 8.88/
DATA (X(21,J),d=1,2) /72.1, 7.68/
DATA (X(22,J),d=1,2) /58.1, 8.47/
DATA (X(23,J),d=1,2) /44.6, 8.86/
DATA (X(24,J),d=1,2) /33.4, 10.36/
DATA (X(25,J),d=1,2) /28.6, 11.08/
1
IRSP = 2
IND =1
CONPCP = 99.0
IPRINT = 1
CALL RONE (X, IRSP, IND, AOV, COEF, COVB, TESTLF, CASE, &
CONPCP=CONPCP, IPRINT=IPRINT, NRMISS=NRMISS)
I
END
Output
R-squared Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Model Error Mean Var. (percent)
71.444 70.202 0.8901 9.424 9.445
* * * Analysis of Variance * * *
Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Regression 1 45.59 45.59 57.543 0.0000
Residual 23 18.22 0.79
Corrected Total 24 63.82
* * * Tnference on Coefficients * * *
Standard Prob. of Variance
Coef. Estimate Error t-statistic Larger |t| Inflation
1 13.62 0.5815 23.43 0.0000 10.67
2 -0.08 0.0105 -7.59 0.0000 1.00
* * * Tegt for Lack of Fit * * *
Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Lack of fit 22 17.40 0.7911 0.966 0.6801
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Pure error 1 0.82 0.8192
Residual 23 18.22

* * * Case Analysis * * *

Obs. Observed Predicted Residual Leverage Std. Res. Jack Res.
Cook’s D DFFITS 95.0% CI 95.0% CI 99.0% PI 99.0% PI
Y 11 8.2400 9.9189 -1.6789 0.0454 -1.9305 -2.0625
0.0886 -0.4497 9.5267 10.3112 7.3640 12.4739
17.5
15.0 T
T~
=125 T~ ¢
o . H““{ .
31 ~_ -
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- * - ‘-\-\"'\-\.\_\.H
i o
5.0 ]
2-5 I I I | L I I | I I I | I I I | I L I 3
0.0 20.0 40.0 60.0 B0.0 100.0
Termperature (°F)

Figure 2.2 — Plot of Line and 99% One-at-a-Time Prediction Intervals

Example 2

This example fits a line to a data set discussed by Draper and Smith (1981, pages 38-40). The data set con-
tains several repeated x values in order to assess lack of fit of the straight line. The IPRINT = 1 option is
selected. Hence, plots are not produced and only unusual cases are printed. Note in the case analysis that
observations 1 and 2 are labeled with an “X” to indicate an unusual x value. Each have leverage 0.1944 that
exceeds the average leverage of p/n = 2/24 by a factor of 2.

USE RONE_INT

IMPLICIT NONE

INTEGER LDCASE, LDCOEF, LDCOVB, LDX, NCOEF, NCOL, NOBS,J

INTEGER INTCEP, NRMISS

PARAMETER (INTCEP=1, NCOL=2, NOBS=24, LDCASE=NOBS, LDX=NOBS, &
NCOEF=INTCEP+1, LDCOEF=NCOEF, LDCOVB=NCOEF)

INTEGER IFRQ, IND, IPRED, IPRINT, IRSP
REAL AOV(15), CASE(LDCASE,12),COEF (LDCOEF,5), &
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COVB (LDCOVB, NCOEF) ,

DATA (X(1,J),J=1,2)
DATA (X(2,J),J=1,2)
DATA (X(3,J),J=1,2)
DATA (X(4,J),J=1,2)
DATA (X(5,J),J=1,2)
DATA (X(6,J),J=1,2)
DATA (X(7,J),J=1,2)
DATA (X(8,J),J=1,2)
DATA (X(9,J),J=1,2)
DATA (X(10,J),J=1,2)
DATA (X(11,J),J=1,2)
DATA (X(12,J),J=1,2)
DATA (X(13,J),J=1,2)
DATA (X(14,J),J=1,2)
DATA (X(15,J),J=1,2)
DATA (X(16,J),J=1,2)
DATA (X(17,J),J=1,2)
DATA (X(18,J),J=1,2)
DATA (X(19,J),J=1,2)
DATA (X(20,J),J=1,2)
DATA (X(21,J),J=1,2)
DATA (X(22,J),J=1,2)
DATA (X(23,J),J=1,2)
DATA (X(24,J),J=1,2)
|
IRSP = 1
IND = 2
IPRINT = 1

CALL RONE (X,

IRSP,

/2.
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IND, AOV, COEF,

TESTLF (10) ,

IPRINT=IPRINT, NRMISS=NRMISS)

X (LDX,NCOL)

COVB, TESTLF, CASE,

&

END
Output
R-squared Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Model Error Mean Var. (percent)
22.983 19.483 0.9815 2.858 34.34
* * * Analysis of Variance * * *
Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Regression 1 6.32 6.325 6.565 0.0178
Residual 22 21.19 0.963
Corrected Total 23 27.52
* * * Inference on Coefficients * * *
Standard Prob. of Variance
Coef. Estimate Error t-statistic Larger |t| Inflation
1 1.436 0.5900 2.435 0.0235 8.672
2 0.338 0.1319 2.562 0.0178 1.000
* * * Test for Lack of Fit * * *
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Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Lack of fit 11 8.72 0.793 0.700 0.7183
Pure error 11 12.47 1.134
Residual 22 21.19
* * * Case Analysis * * *
Obs. Observed Predicted Residual Leverage Std. Res. Jack Res.
Cook’s D DFFITS 95.0% CI 95.0% CI 95.0% PI 95.0% PI
X 1 2.3000 1.8756 0.4244 0.1944 0.4817 0.4731
0.0280 0.2324 0.9783 2.7730 -0.3489 4.1002
X 2 1.8000 1.8756 -0.0756 0.1944 -0.0859 -0.0839
0.0009 -0.0412 0.9783 2.7730 -0.3489 4.1002
Y 13 5.4000 3.0245 2.3755 0.0460 2.4780 2.8515
0.1481 0.6264 2.5877 3.4612 0.9426 5.1063
Y 24 5.9000 3.7002 2.1998 0.1537 2.4363 2.7855
0.5391 1.1873 2.9021 4.4983 1.5138 5.8866
0.20
0.15
© -
] 4
a
] 0.10 - I ]
o |
0.05 | ll |
L e o I
2 & 8 1 12 14 16 18 20 22 24
Obzervation Mumber
Figure 2.3 — Plot of Leverages h; and the Average (p/n = 2/24)
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RINCF

Performs response control given a fitted simple linear regression model.

Required Arguments

SUMWTF — Sum of products of weights with frequencies from the fitted regression. (Input, if
INTCEP = 1)
In the ordinary case when weights and frequencies are all one, SUMWTF equals the number of
observations.

DFE — Degrees of freedom for error from the fitted regression. (Input)

B — Vector of length INTCEP + 1 containing a least-squares solution for the intercept and slope. (Input)

INTCEP Intercept Slope
0 B(1)
1 B(1) B(2)

XYMEAN — Vector of length 2 containing the variable means. (Input)
XYMEAN(1) is the independent variable mean. XYMEAN(2) is the dependent variable mean. If
INTCEP = 0, XYMEAN is not referenced and can be a vector of length one.

S§SX — Sum of squares for the independent variable. (Input)
If INTCEP = 1, SSX is the sums of squares of deviations of the independent variable from its mean.
Otherwise, SSX is not corrected for the mean.

$2 — 52, the estimate of o from the fitted regression. (Input)

YLOWER — Lower limit for the response. (Input)

YUPPER — Upper limit for the response. (Input)

XLOWER — Lower limit on the independent variable for controlling the response. (Output)

XUPPER — Upper limit on the independent variable for controlling the response. (Output)

Optional Arguments

INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.

1 An intercept is in the model.

SWTFY0 — s2/SWTFYO0 is the estimated variance of the future response (or future response mean) that is
to be controlled. (Input)
In the ordinary case, when weights and frequencies are all one, SWTFYO is the number of observations
in the response mean that is to be controlled. SWTFY0 = 0.0 means the true response mean is to be con-
trolled.
Default: SWTFYO = 0.0.

= ROQQ?WQ\{E{ RINCF Chapter 2: Regression

113



CONPER — Confidence level for a two-sided response control, in percent. (Input)
CONPER percent limits are computed; hence, CONPER must be greater than or equal to 0.0 and less than
100.0. CONPER often will be 90.0, 95.0, or 99.0. For one-sided control with confidence level ONECL,
where ONECL is greater than or equal to 50.0 and less than 100.0, set
CONPCM = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

FORTRAN 90 Interface

Generic: CALL RINCF (SUMWTF, DFE, B, XYMEAN, SSX, S2, YLOWER, YUPPER, XLOWER, XUPPER
[,...] )
Specific: The specific interface names are S_RINCF and D_RINCF.

FORTRAN 77 Interface

Single: CALL RINCF (SUMWTF, DFE, INTCEP, B, XYMEAN, SSX, S2, SWTFY0, CONPER, YLOWER,
YUPPER, XLOWER, XUPPER)
Double: The double precision name is DRINCF.
Description

Routine RINCF estimates settings of the independent variable that restrict, at a specified confidence percent-
age, the average of k randomly drawn responses to a given acceptable range (or the true mean response to a
given acceptable range), using a fitted simple linear regression model. The results of routine RLINE or RONE
can be used for input into RINCF. The simple linear regression model is assumed:

yi:BO+lei+€i i:1,2,...,7’l+k

where the &;’s are independently distributed normal errors with mean zero and variance 02/w;,. Here,  is the

total number of observations used in the fit of the line, i.e., n = DFE + INTCEP + 1. Also, k is the number of
additional responses whose average is to be restricted to the specified range. The w;’s are the weights.

The methodology is based on Graybill (1976, pages 280-283). The estimate of 62, s (stored in S2), is the

usual estimate of 02 from the fitted regression based on the first 1 observations. First, a test of the hypothesis
Hy:B1=0vs.H,:Bq # 0atlevel x =1 - CONPER/100 is performed. If Hy, is accepted, the model becomes

y; = Bp + €;, and limits for x to control the response are meaningless since x is no longer in the model. In this

case, a type 4 fatal error is issued. If Hy) is rejected and 3, is positive, a lower limit (upper limit) for x stored in
XLOWER(XUPPER) is computed for the case where SWTFYO is positive by

A _ e 2
}4_@:&% na + n+il + n<y0 y)_ -
Wi Y w sz<xi_x>
L B e

where y is the value stored in YLOWER(YUPPER) and where
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£s?

—\2
Mﬁ(Xi—'x>
i=1

and t is the 50 + CONPER/2 percentile of the t distribution with DFE degrees of freedom. In the formula, the
symbol =+ is used to indicate that + is used to compute XLOWER with 1y = YLOWER, and - is used to compute

A2
a=,81—

M=z

XUPPER with yg = YUPPER. If Hj is rejected and B, is negative, a lower limit (upper limit) for x stored in

XLOWER(XUPPER) is computed for the case where SWTFYO is positive by a small modification. In particular,
the symbol = is then taken so that + is used to compute XLOWER with i = YUPPER, and - is used to compute

XUPPER with yj = YLOWER. These limits actually have a confidence coefficient less than that specified by
CONPER.

In the weighted case, which was discussed earlier, the means (stored in XYMEAN) and the sum of squares for
x (stored in SSX) are all weighted. When the variances of the ¢;’s are all equal, ordinary least squares must be

used, this corresponds to all w; = 1.

The previous discussion can be generalized to the case where an intercept is not in the model. The necessary

modifications are to let = 0, ﬁo = 0 and to replace the first term under the square root symbol by zero, ¥ by

zero, and j by zero.

In order to restrict the true mean response to a specified range, i.e, when SWTFYO is zero, the formulas are
modified by replacing the second term under the square root symbol with zero.

Comments
Informational errors

Type Code Description

4 1 The slope is not significant at the (100 - CONPER) percent level. Control limits
cannot be obtained.

4 2 The computed lower limit, XLOWER, exceeds the computed upper limit,
XUPPER. No satisfactory settings of the independent variable exist to control
the response as specified.

Example

This example estimates the settings of the independent variable that restrict, at 97.5% confidence, the true
mean response to a upper bound of -4.623, using a fitted simple linear regression model. The fitted model
excludes the intercept term. To accomplish one-sided control, CONPER is set to 100 - 2(100 - 97.5) = 95, and
YLOWER is set to an arbitrary value less than YUPPER. The output for XLOWER furnishes the lower bound for
x necessary to control y.

USE RINCF_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER INTCEP
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PARAMETER

INTEGER

REAL

DATA B/-.

SUMWTF
DFE
SSX

S2
SWTFYO
ONECL
CONPER
YUPPER
YLOWER

CALL RINCF

(INTCEP=0)

NOUT
B(INTCEP+1), CONPER, DFE, ONECL,
SWTFY0, XLOWER, XUPPER, XYMEAN(1),

S2, SSX, SUMWTF,
YLOWER, YUPPER

079829/

25.0
24.0
76323.0
0.7926
0.0
97.5
100.0
-4.623
-9.0
(SUMWTF, DFE, B, XYMEAN, SSX, S2, YLOWER, YUPPER,
XLOWER, XUPPER, INTCEP=INTCEP, CONPER=CONPER)

- 2*(100.0-ONECL)

CALL UMACH (2, NOUT)
WRITE (NOUT,*) 'XLOWER = ', XLOWER, ' XUPPER = ', XUPPER
END
Output
XLOWER = 63.1747 XUPPER = 104.07
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RINPF

Performs inverse prediction given a fitted simple linear regression model.

Required Arguments

SUMWTF — Sum of products of weights with frequencies from the fitted regression. (Input, if
INTCEP = 1)
In the ordinary case when weights and frequencies are all one, SUMWTF equals the number of observa-
tions used in the fit of the model.

DFS2 — Degrees of freedom for estimate of o2 (Input)
If 1Y0 =1, DFS2 is the degrees of freedom for error from the fitted regression. If IY0 = 0, DFS2 is the
pooled degrees of freedom from the estimate of sigma-squared based on the fitted regression and the
additional responses used to compute the mean YO0.

B — Vector of length INTCEP + 1 containing a least-squares solution for the intercept and slope. (Input)

INTCEP Intercept Slope
0 B(1)
1 B(1) B(2)

XYMEAN — Vector of length 2 with the mean of the independent and dependent variables, respectively.
(Input, if INTCEP = 1)
If INTCEP = 0, XYMEAN is not referenced and can be a vector of length 1.

S§SX — Sum of squares for x. (Input)
If INTCEP = 1, SSX is the sum of squares of deviations of x from its mean. If INTCEP = 0, SSX must not
be corrected for the mean.

$2 — 52, the estimate of the variance of the error in the model. (Input)

If TY0 =1, S2 is the estimate of 2 from the fitted regression. If TY0 = 0, S2 is the pooled estimate of G2
based on the fitted regression, and the additional responses used to compute the mean YO0.

Y0 — Value of the response variable for which an interval estimate of the corresponding independent vari-
able value is desired. (Input)

XO0HAT — Point estimate of the independent variable. (Output)
XLOWER — Lower limit of the interval estimate for the independent variable. (Output)
XUPPER — Upper limit of the interval estimate for the independent variable. (Output)

Optional Arguments

INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.

1 An intercept is in the model.
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CONPER — Confidence level for the interval estimation. (Input)
CONPER must be expressed as a percentage between 0.0 and 100.0. CONPER often will be
90.0, 95.0, 99.0. For one-sided confidence intervals with confidence level ONECL, set
CONPER = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPER = 95.0.

IY0 — Option for Y0. (Input)
Default: TY0 = 1.

IYO Action
0 Y0 is a sample mean of one or more responses.
1 v0 is the true mean response.

SWTFY0 — Sum of products of weights with frequencies for Y0. (Input, if IY0 = 0)
In the ordinary case, when weights and frequencies are all one, SWTFYO is the number of observations
used to obtain the mean Y0.If IY0 = 1, SWTFYO is not referenced.

FORTRAN 90 Interface

Generic: CALL RINPF (SUMWTF,DFS2 , B, XYMEAN, SSX, S2, Y0, XOHAT, XLOWER , XUPPER [, ...])
Specific: The specific interface names are S_RINPF and D_RINPF.

FORTRAN 77 Interface

Single: CALL RINPF (SUMWTF,DFS2 , INTCEP, B, XYMEAN, SSX , S2 , CONPER, IY0, SWTFYO, YO,
XOHAT, XLOWER , XUPPER)

Double: The double precision name is DRINPF.

Description

Routine RINPF computes a confidence interval on the independent variable setting x for a given response y
from the results of a straight line fit. Here, 1 may represent the mean of k responses or the true mean

response. The results of routine RLINE or RONE can be used for input into RINPF. The simple linear regres-
sion model is assumed,

Yi~— ﬂoJr,le“Lgi i=12,.n+k

where the €;'s are independently distributed normal errors with mean zero and variance o2 /w;. Here, n is the

total number of observations used in the fit of the line, i.e., n = DFE + INTCEP + 1 where DFE is the degrees of
freedom from the fitted regression. Also, k is the number of additional responses used to determine . The

w;’s are the weights that must be used in the fit of the model. The methodology is discussed by Graybill
(1976, pages 280-283). For the case when IY0 =1, the estimate of 02, 5% (stored in S2), is the usual estimate of

o2 from the fitted regression based on the first 1 observations. If TY0 = 0, the estimate of 6 is a pooled esti-
mator based on the fitted regression and the k responses that produce ¥,.
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This pooled estimator (stored in S2) is given by

n A A 2 nt+k )
%M(%‘ﬂo_ﬂlxi) + X Wi<yi_y0>
_ =

CHEGD

where (n - 2) + (k - 1) (stored in DFS2) is the pooled degrees of freedom for s2.

2
S =

First, a point estimate X, (stored in XOHAT) is computed by

A y() - ﬁ()
b ) T —
B
Then, a test of the hypothesis Hy : 1 = 0 vs. H, : By # 0 is performed. If Hj is accepted, the model becomes

y; = Bo + €;, and therefore no confidence interval exists for xj because it is no longer in the model. In this case,
a type 3 warning error is issued. If Hy is rejected, a confidence interval exists and is computed for the case

IY0 =1by
g — —\2
,Bl<y0—y> ts a a <y0—y>
Xxt——Gg——*G|7 —t% — Tt 7 5
> Wi > ow; sz<xi_x>
=1 i=n+1 =1
where

and t is the 50 + CONPER/2 percentile of the ¢ distribution with DFS2 degrees of freedom. The interval actu-
ally has a confidence coefficient less than that specified by CONPER.

In the weighted case, which was discussed earlier, the means (stored in XYMEAN) and the sum of squares for
x (stored in SSX) are all weighted. When the variances of the ¢;’s are all equal, ordinary least squares must be
used, this corresponds to all w; = 1.

Modifications are necessary to the preceding discussion for other cases. For the case when an intercept is not

in the model, let £, = 0,8, = 0 the pooled degrees of freedom of s> equal to (1 - 1) + (k - 1), and replace the
first term under the square root symbol with zero, x with zero, and 3 with zero.

For the case of the true response mean, i.e, when IY0 = 1, replace the second term under the square root sym-
bol by zero.
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Comments

Informational errors
Type Code Description

3 2 The slope is not significant at the (100 - CONPER)% level. Confidence limits
XLOWER and XUPPER cannot be obtained.

Example

This example fits a line to a set of data discussed by Draper and Smith (1981, Table 1.1, page 9). The response
y is the amount of steam used per month (in pounds), and the independent variable x is the average atmo-
spheric temperature (in degrees Fahrenheit). A 95% confidence interval for the temperature x( is computed

given a single response of 1, = 10.

USE RINPF_INT
USE RLINE_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER NOBS
PARAMETER (NOBS=25)

INTEGER INTCEP, IYO, NOUT

REAL B(2), BO, Bl, CONPER, DFS2, S2, SSX, STAT(12), &
SUMWTF, SWTFYO0, XOHAT, XDATA(NOBS), XLOWER, XUPPER, &
XYMEAN (2), YO0, YDATA(NOBS)

DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7, &
57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0, &
74.5, 72.1, 58.1, 44.6, 33.4, 28.6/

DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5, &
7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09, &
8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/

CALL RLINE (XDATA, YDATA, BO, Bl, STAT=STAT)

SUMWTF = NOBS

DFS2 = STAT(10)

INTCEP =1

B(1) = BO

B(2) = Bl

XYMEAN (1) = STAT(1)

XYMEAN (2) = STAT(2)

SSX = STAT(3) * (NOBS-1)
S2 = STAT(11) /STAT(10)
CONPER = 95.0

IY0 =0

SWTFYO =1.0

YO0 = 10.0

CALL RINPF (SUMWTF, DFS2, B, XYMEAN, SSX, S2, YO, XOHAT, XLOWER, &
XUPPER, IYO0=IY0, SWTFYO=SWTFYO)
CALL UMACH (2, NOUT)
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WRITE (NOUT,*) 'XOHAT = ', XOHAT
WRITE (NOUT,*) ' (XLOWER,XUPPER) = (', XLOWER, ',', XUPPER, ')'
END

Output

XOHAT = 45.3846
(XLOWER, XUPPER) = (20.2627,69.347)
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RLSE

Fits a multiple linear regression model using least squares.

Required Arguments

Y — Vector of length NOBS containing the dependent (response) variable. (Input)
X — NOBS by NIND matrix containing the independent (explanatory) variables. (Input)

B — Vector of length INTCEP + NIND containing a least-squares solution ﬂ for the regression coefficients.

(Output)

For INTCEP = 0, the fitted value for observation I is

B(1) * X(1,1) + B(2) * X(I,2) + ... + B(NIND) * X(I, NIND).
For INTCEP = 1, the fitted value for observation I is

B(1) +B(2) * X(1,1) + ... + B(NIND + 1) * X(I, NIND).

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (¥,1).

NIND — Number of independent (explanatory) variables. (Input)
Default: NIND = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.

(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

SST — Total sum of squares. (Output)
If INTCEP = 1, the total sum of squares is corrected for the mean.

SSE — Sum of squares for error. (Output)

FORTRAN 90 Interface

Generic: CALLRLSE(Y,X,B [,...]1)
Specific: The specific interface names are S_RLSE and D_RLSE.

FORTRAN 77 Interface

Single: CALL RLSE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE)
Double: The double precision name is DRLSE.
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Description

Routine RLSE fits a multiple linear regression model with or without an intercept. If INTCEP = 1, the multi-
ple linear regression model is

yl.Z,BO-I-,leil+ﬂ2xi2+...+ﬁkxik+£i i=1,2, ...,n

where the observed values of the y;’s (input in Y) constitute the responses or values of the dependent vari-
able, the x;1’s, xj5’s, ..., x3’s (input in X) are the settings of the k (input in NIND) independent variables,
Bo, By, ..., Br are the regression coefficients whose estimated values are output in B, and the € ;s are inde-

pendently distributed normal errors each with mean zero and variance 6. Here, 1 is the number of valid
rows in the augmented matrix (X, Y), i.e. n equals NOBS - NRMISS (the number of rows that do not contain
NaN). If INTCEP = 0, B is not included in the model.

Routine RLSE computes estimates of the regression coefficients by minimizing the sum of squares of the
deviations of the observed response y; from the fitted response

Y,

for the n observations. This minimum sum of squares (the error sum of squares) is output and denoted by

SSE = anyi—}i)z
P

In addition, the total sum of squares is output. For the case, INTCEP = 1, the total sum of squares is the sum
of squares of the deviations of y; from its mean

y

— the so-called corrected total sum of squares; it is denoted by

n
SST = Z(yl. 7Y
i=1

For the case INTCEP = 0, the total sum of squares is the sum of squares of y; — the so-called uncorrected total

n
SST = Z ¥’
i=1

See Draper and Smith (1981) for a good general treatment of the multiple linear regression model, its analy-
sis, and many examples.

sum of squares; it is denoted by

In order to compute a least-squares solution, RLSE performs an orthogonal reduction of the matrix of regres-
sors to upper triangular form. If the user needs the upper triangular matrix output for subsequent
computing, the routine R2SE can be invoked in place of RLSE. (See the description of R in Comment 1). The
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reduction is based on one pass through the rows of the augmented matrix (X, Y) using fast Givens transfor-
mations. (See routines SROTMG and SROTM Golub and Van Loan, 1983, pages 156-162, Gentleman, 1974.) This
method has the advantage that the loss of accuracy resulting from forming the crossproduct matrix used in
the normal equations is avoided.

With INTCEP = 1, the current means of the dependent and independent variables are used to internally cen-
ter the data for improved accuracy. Let x; be a column vector containing the j-th row of data for the
independent variables. Let X, represent the mean vector for the independent variables given the data for rows
1,2, ...,i. The current mean vector is defined to be

Xj

~.
T~

X; = i

The i-th row of data has X, subtracted from it and is then weighted by i/(i - 1). Although a crossproduct

matrix is not computed, the validity of this centering operation can be seen from the following formula for
the sum of squares and crossproducts matrix:

n n

Z(xi_%n>(xi_xn)T = Zl_l I (%“E‘)(&"E‘)T

i=1 i=2

An orthogonal reduction on the centered matrix is computed. When the final computations are performed,
the first row of R and the first element of B are updated so that they reflect the statistics for the original
(uncentered) data. This means that the estimate of the intercept and the R matrix are for the uncentered data.

As part of the final computations, RLSE checks for linearly dependent regressors. If the i-th regressor is a lin-
ear combination of the first i - 1 regressors, the i-th diagonal element of R is close to zero (exactly zero if
infinite precision arithmetic could be used) prior to the final computations. In particular, linear dependence
of the regressors is declared if any of the following three conditions is satisfied:

& A regressor equals zero.
¢ Two or more regressors are constant.

¢ The result of

2
\/1 _Ri~1,2,...,i—1

is less than or equal to 100 X € where € is the machine epsilon. (For RLSE, € = AMACH(4) and for DRLSE,
€ = DMACH(4). See routines AMACH and DMACH in Reference Material).

Here, R;.1, 5, --., j—1 is the multiple correlation coefficient of the i-th independent variable with the firsti - 1

independent variables. If no intercept is in the model (INTCEP = 0), the “multiple correlation” coefficient is
computed without adjusting for the mean.
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On completion of the final computations, if the i-th regressor is declared to be linearly dependent upon the
previousi - 1 regressors, then the i-th element of B and all elements in the i-th row of R are set to zero. Finally,
if a linear dependence is declared, an informational (error) message, code 1, is issued indicating the model is
not full rank.

Comments
1.  Workspace may be explicitly provided, if desired, by use of R2SE/DR2SE. The reference is:
CALL R2SE (NOBS, Y, NIND, X, LDX, INTCEP, B, SST, SSE, R, LDR, DFE, NRMISS, WK)
The additional arguments are as follows:

R — INTCEP + NIND by INTCEP + NIND upper triangular matrix containing the R matrix from a
QR decomposition of the matrix of regressors. (Output)
All of the diagonal element of R are taken to be nonnegative. The rank of the matrix of regres-
sors is the number of positive diagonal elements, which equals NOBS - NRMISS - DFE.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling pro-
gram. (Input)
DFE — Degrees of freedom for error. (Output)

NRMISS — Number of rows in the augmented matrix (X, Y) containing NaN (not a number).
(Output)
If a row contains NaN, that row is excluded from all other computations.

WK — Work vector of length 5 * NIND + 4 * INTCEP + 2.

2. Informational error

Type Code Description
3 1 The model is not full rank. There is not a unique least-squares solution. If the
I-th diagonal element of R is zero, B(]) is set to zero in order to compute a
solution.
Examples
Example 1

A regression model
yi= Bo + Bixjy + Boxpp + Baxs + & i=12,...,9

is fitted to data taken from Maindonald (1984, pages 203-204).

USE RLSE_INT
USE WRRRN_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER INTCEP, LDX, NCOEF, NIND, NOBS, J

PARAMETER (INTCEP=1, NIND=3, NOBS=9, LDX=NOBS, &
NCOEF=INTCEP+NIND)

INTEGER NOUT
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REAL B(NCOEF), SSE, SST, X(LDX,NIND), Y(NOB
!
DATA (X(1,J),J=1,NIND)/ 7.0, 5.0, 6.0/, Y(1)/ 7
DATA (X(2,J),J=1,NIND)/ 2.0, -1.0, 6.0/, Y(2)/-5
DATA (X(3,J),J=1,NIND)/ 7.0, 3.0, 5.0/, Y(3)/ 6
DATA (X(4,J),J=1,NIND)/-3.0, 1.0, 4.0/, Y(4)/ 5
DATA (X(5,J),J=1,NIND)/ 2.0, -1.0, 0.0/, Y(5)/ 5
DATA (X(6,J),J=1,NIND)/ 2.0, 1.0, 7.0/, Y(6)/-2
DATA (X(7,J),J=1,NIND)/-3.0, -1.0, 3.0/, Y(7)/ O
DATA (X(8,J),J=1,NIND)/ 2.0, 1.0, 1.0/, Y(8)/ 8
DATA (X(9,J),J=1,NIND)/ 2.0, 1.0, 4.0/, Y(9)/ 3
I
CALL RLSE (Y, X, B, SST=SST, SSE=SSE)
CALL WRRRN ('B', B)
CALL UMACH (2, NOUT)
WRITE (NOUT, *)
WRITE (NOUT,99999) 'SST = ', SST, ' SSE = ', SSE
99999 FORMAT (A7, F7.2, A7, F7.2)
END
Output
B
1 7.733
2 -0.200
3 2.333
4 -1.667
SST = 156.00 SSE =  4.00
Example 2

A weighted least-squares fit is computed using the model

yi: BO + lel]. + Bzxiz + El i= 1/ 2/ reey 4

S)

.0/
.0/
.0/
.0/
.0/
.0/
.0/
.0/
.0/

and weights 1/ discussed by Maindonald (1984, pages 67 - 68). In order to compute the weighted least-
squares fit, using an ordinary least squares routine (RLSE), the regressors (including the column of ones for
the intercept term as well as the independent variables) and the responses must be transformed prior to invo-
cation of RLSE. The transformed regressors and responses can be computed by using routine SHPROD

(IMSL MATH/LIBRARY). For the i-th case the corresponding response and regressors are multiplied by a
square root of the i-th weight. Because the column of ones corresponding to the intercept term in the untrans-
formed model, is transformed by the weights, this transformed column of ones must be input to the least
squares subroutine as an additional independent variable along with the option INTCEP = 0.

In terms of the original, untransformed regressors and responses, the minimum sum of squares for error out-

putin SSEis
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SSE = Zw< yi=5)
=1

where here the weight w; = 1/i%. Also, since INTCEP = 0, the uncorrected total sum of squares is output in
SST. In terms of the original untransformed responses,

n
SST = Zw,.yf
i=1

USE RLSE_INT
USE SHPROD_INT
USE WRRRN_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER INTCEP, LDX, NCOEF, NIND, NOBS, J

PARAMETER (INTCEP=0, NIND=3, NOBS=4, LDX=NOBS, &
NCOEF=INTCEP+NIND)

INTEGER I, NOUT
REAL B(NCOEF), SQRT, SSE, SST, W(NOBS), X(LDX,NIND), &
Y (NOBS)

INTRINSIC SORT

DATA (X(1,J),J=1,NIND)/1.0, -2.0, 0.0/, Y(1)/-3.0/
DATA (X(2,dJ),Jd=1,NIND)/1.0, -1.0, 2.0/, Y(2)/ 1.0/
DATA (X(3,J),J=1,NIND)/1.0, 2.0, 5.0/, Y(3)/ 2.0/
DATA (X(4,J),J=1,NIND)/1.0, 7.0, 3.0/, Y(4)/ 6.0/
I
DO 10 1I=1, NOBS
1 Assign weights
W(I) = 1.0/I**2
! Store square roots of weights
W(I) = SQRT(W(I))

10 CONTINUE
! Transform regressors
DO 20 J=1, NIND
CALL SHPROD (NOBS, W, 1, X(:,J), 1, X(:,J), 1)
20 CONTINUE
! Transform response
CALL SHPROD (NOBS, W, 1, Y, 1, Y, 1)

CALL RLSE (Y, X, B, INTCEP=INTCEP, SST=SST, SSE=SSE)
CALL WRRRN ('B', B)

CALL UMACH (2, NOUT)
WRITE (NOUT, *)

WRITE (NOUT,99999) 'SST = ', SST, ' SSE = ', SSE
99999 FORMAT (A7, F7.2, A7, F7.2)
END
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Output

B
1 -1.431
2 0.658
3 0.748
SST = 11.94 SSE = 1.01
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RCOV

Fits a multivariate linear regression model given the variance-covariance matrix.

Required Arguments

COV — NIND + NDEP by NIND + NDEP matrix containing the variance-covariance matrix or sum of
squares and crossproducts matrix. (Input)
Only the upper triangle of COV is referenced. The first NIND rows and columns correspond to the inde-
pendent variables, and the last NDEP rows and columns correspond to the dependent variables. If
INTCEP = 0, COV contains raw sums of squares and crossproducts. If INTCEP = 1, COV contains sums
of squares and crossproducts corrected for the mean. If weighting is desired, COV contains weighted
sums of squares and crossproducts.

XYMEAN — Vector of length NIND + NDEP containing variable means. (Input, if INTCEP = 1)
The first NIND elements of XYMEAN are for the independent variables in the same order in which they
appear in COV. The last NDEP elements of XYMEAN are for the dependent variables in the same order in
which they appear in COV. If weighting is desired, XYMEAN contains weighted means. If INTCEP =0,
XYMEAN is not referenced and can be a vector of length one.

SUMWTF — Sum of products of weights with frequencies. (Input, if INTCEP = 1)
In the ordinary case when weights and frequencies are all one, SUMWTF equals the number of
observations.

B — INTCEP + NIND by NDEP matrix containing a least-squares solution 3 for the regression coefficients.
(Output)
Column j is for the j-th dependent variable. If INTCEP = 1, row 1 is for the intercept. Row INTCEP + i
is for the i-th independent variable. Elements of the appropriate row(s) of B are set to 0.0 if linear
dependence of the regressors is declared.

Optional Arguments

INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.

1 An intercept is in the model.

NIND — Number of independent (explanatory) variables. (Input)
Default: NIND = size (B,1) - INTCEP.

NDEP — Number of dependent (response) variables. (Input)
Default: NDEP = size (B,2).

LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCOV = size (COV,1).

TOL — Tolerance used in determining linear dependence. (Input)
For RCOV, TOL = 100 * AMACH(4) is a common choice. See documentation for routine AMACH in Refer-
ence Material.
Default: TOL = 1.e-5 for single precision and 2.d -14 for double precision.

= ROQQ?WQ\{EF RCOV Chapter 2: Regression 129



LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDB = size (B,1).

R — INTCEP + NIND by INTCEP + NIND upper triangular matrix containing the R matrix from a Cholesky

factorization RR of the matrix of sums of squares and crossproducts of the regressors. (Output)
Elements of the appropriate row(s) of R are set to 0.0 if linear dependence of the regressors is declared.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

IRANK — Rank of R. (Output)
IRANK less than INTCEP + NIND indicates that linear dependence of the regressors was declared. In

this case, some rows of B are set to zero.

SCPE — NDEP by NDEP matrix containing the error (residual) sums of squares and crossproducts.
(Output)

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDSCPE = size (SCPE,1).

FORTRAN 90 Interface

Generic: CALL RCOV (COV, XYMEAN, SUMWTF, B [, ...])
Specific: The specific interface names are S_RCOV and D_RCOV.

FORTRAN 77 Interface

Single: CALL RCOV (INTCEP, NIND, NDEP, COV, LDCOV, XYMEAN, SUMWTF, TOL, B, LDB, R, LDR,
IRANK, SCPE, LDSCPE)
Double: The double precision name is DRCOV.
Description

Routine RCOV fits a multivariate linear regression model given the variance-covariance matrix (or sum of
squares and crossproducts matrix) for the independent and dependent variables. Typically, an intercept is to
be in the model, and the corrected sum of squares and crossproducts matrix is input for COv. Routine CORVC
in Chapter 3, “Correlation” can be invoked to compute the corrected sum of squares and crossproducts matrix.
Routine RORDM in Chapter 19, “Utilities” can reorder this matrix, if required. If an intercept is not to be
included in the model, a raw (uncorrected) sum of squares and crossproducts matrix must be input for COv;
and SUMWTF and XYMEAN are not used in the computations. Routine MXTXF (IMSL MATH/LIBRARY) can be
used to compute the raw sum of squares and crossproducts matrix.

Routine RCOV is based on a Cholesky factorization of COV. Let k (input in NIND) be the the number of inde-
pendent variables, and d (input in SUMWTF) the denominator used in computing the x means (input in the
first k locations of XYMEAN). The matrix R is formed by computing a Cholesky factorization of the first k rows
and columns of COV. If INTCEP equals one, the k rows from this factorization are appended to the initial row
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Va, Ndx, . Nd

The resulting R matrix is the Cholesky factor of the X! X matrix where X contains a column of ones as its first
column and the independent variable settings as its remaining k columns.

Maindonald (1984, Chapter 3) discusses the Cholesky factorization as it applies to regression computations.

The routine RCOV checks sequentially for linear dependent regressors. Linear dependence of the regressors is
declared if

2
1=R{ 0 i

is less than or equal to TOL. Here, R;.q, 5, ... ; —1 is the multiple correlation coefficient of the i-th independent
variable with the first i - 1 independent variables. If no intercept is in the model (INTCEP = 0), the “multiple
correlation” coefficient is computed without adjusting for the mean. When a dependence is declared, ele-
ments of the corresponding rows of R and B are set to zero. Maindonald (1984, Sections 3.3, 3.4, and 3.9)
discusses these implementation details of the Cholesky factorization in regression problems.

Comments

1. Informational error

Type Code Description
3 1 COV is not a variance-covariance matrix within the tolerance defined by TOL.
Example

This example uses a data set from Draper and Smith (1981, pages 629 - 630). This data set is put into the
matrix X by routine GDATA (Chapter 19, “Ultilities”). The first four columns are for the independent variables,
and the last column is for the dependent variable. Routine CORVC in Chapter 3, “Correlation” is invoked to
compute the corrected sum of squares and crossproducts matrix. Then, RCOV is invoked to compute the
regression coefficient estimates, the R matrix, and the sum of squares for error.

USE RCOV_INT
USE GDATA_INT
USE CORVC_INT
USE UMACH_INT
USE WRRRN_INT

IMPLICIT NONE

INTEGER LDX, NDX, NIND, NDEP, LDCOV, LDSCPE, INTCEP

INTEGER LDB, LDR, NROW, NVAR, IRANK, NOUT

PARAMETER (LDX=13, NDX=5, NIND=4, NDEP=1, LDCOV=NIND+NDEP, &
LDSCPE=NDEP)

PARAMETER (INTCEP=1, LDB=INTCEP+NIND, LDR=INTCEP+NIND)

REAL XYMEAN (NIND+NDEP)

REAL X (LDX,NDX), B(LDB,NDEP), R(LDR,INTCEP+NIND)
REAL COV (LDCOV, NIND+NDEP) , SCPE(LDSCPE,NDEP), SUMWTF
INTEGER INCD(1,1), ICOPT
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CALL GDATA

(5, X, NROW, NVAR)

ICOPT = 1
CALL CORVC (NVAR, X, COV, ICOPT=ICOPT, XMEAN=XYMEAN, SUMWT=SUMWTF)
I
CALL RCOV (COV, XYMEAN, SUMWTF, B, R=R, IRANK=IRANK, &
SCPE=SCPE)
!
CALL UMACH (2, NOUT)
WRITE (NOUT,*) 'IRANK = ', IRANK, ' SCPE(1,1)
CALL WRRRN ('B', B, 1, INTCEP+NIND,
CALL WRRRN ('R', R)
END
Output
IRANK = 5 SCPE(1,1) = 47.8638
B
1 2 3 4 5
62.40 1.55 0.51 0.10 -0.14
R
1 2 3 4 5
1 3.6 26.9 173.6 42.4 108.2
2 0.0 20.4 12.3 -18.3 -14.2
3 0.0 0.0 52.5 1.1 -54.6
4 0.0 0.0 0.0 12.5 -12.9
5 0.0 0.0 0.0 0.0 3.4
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RGIVN

Fits a multivariate linear regression model via fast Givens transformations.

Required Arguments
X — |NROW| by NCOL matrix containing the data. (Input)
IIND — Independent variable option. (Input)

IIND Meaning

<0 The first -IIND columns of X contain the independent (explanatory) variables.
>0 The 1IND independent variables are specified by the column numbers in INDIND.
=0 There are no independent variables.

The regressors are the intercept (if INTCEP = 1) and the independent variables. There are
INTCEP + | IIND| regression coefficients for each dependent variable.
INDIND — Index vector of length TIND containing the column numbers of X that are the independent
variables. (Input, if IIND is positive)
If TIND is nonpositive, INDIND is not referenced and can be a vector of length one.

IDEP — Dependent variable option. (Input)

IDEP Meaning

<0 The last -IDEP columns of X contain the dependent (response) variables. That is, col-
umns NCOL + IDEP + 1, NCOL + IDEP + 2, ..., NCOL contain the dependent variables.

>0 The 1DEP dependent (response) variables are specified by the column numbers in
INDDEP..

=0 There are no dependent variables. (Generally, this option is not used. The R matrix

from a QR decomposition of a matrix of regressors is computed.)

INDDEP — Index vector of length IDEP containing the column numbers of X that are the dependent vari-
ables. (Input, if IDEP is positive)
If IDEP is nonpositive, INDDEP is not referenced and can be a vector of length one.

B — INTCEP + |IIND| by |IDEP| matrix containing a least-squares solution B for the regression coeffi-
cients on return from the final invocation of this routine. (Output, if IDO = 0 or 1; Input/Output, if

IDO =2 or 3)
If INTCEP = 1, row 1 is for the intercept. Row INTCEP + I is for the I-th independent variable. Col-

umn j is for the j-th dependent variable.
IDO Action

lor2 A current least-squares solution is given by a solution x to the
equation Rx = B.

Oor3 A least-squares solution for the regression coefficients is returned
in B. Elements of the appropriate row(s) of B are set to 0.0 if linear
dependence of the regressors is declared.

If IDEP = 0, B is not referenced and can be a vector of length 1.

= ROQQ?WQ\{EF RGIVN Chapter 2: Regression 133



Optional Arguments

IDO — Processing option. (Input)
Default: IDO = 0.

IDO Action
0 This is the only invocation of RGIVN for this data set, and all the data are input at once.
1 This is the first invocation, and additional calls to RGIVN will be made. Initialization

and updating for the data in X are performed.

2 This is an intermediate invocation of RGIVN, and updating for the data in X is
performed.
3 This is the final invocation of this routine. Updating for the data in X and wrap-up

computations are performed.

NROW — The absolute value of NROW is the number of rows of data currently input in X. (Input)
NROW may be positive, zero, or negative. Negative NROW means that the -NROW rows of data are to be
deleted from some aspects of the analysis, and this should be done only if IDO is 2 or 3 and the wrap-
up computations have not been performed. When a negative value is input for NROW, it is assumed
that each of the -NROW rows of X has been input (with positive NROW) in previous invocations of
RGIVN. Use of negative values of NROW should be made with care and with the understanding that
XMIN and XMAX cannot be updated properly in this case. It is also possible that a constant variable in
the remaining data will not be recognized as such.
Default: NROW = size (X,1).

NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option. (Input)
Default: INTCEP =1.

INTCEP Action
0 An intercept is not in the model.

1 An intercept is in the model.

IFRQ — Frequency option. (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the
frequencies. If X(I, IFRQ) = 0.0, none of the remaining elements of row I of X are referenced, and
updating of statistics is skipped for row I.
Default: IFRQ = 0.

IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the
weights.
Default: TWT = 0.

ICEN — Data centering option. (Input)
If INTCEP = 0, ICEN must equal 0.
Default: ICEN = 1.
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ICEN Action

0 No centering. This option should be used when (1) the data are already cen-
tered; (2) there is no intercept in the model; or (3) the independent variables
for a large percentage of the data are zero, and sparsity of the problem needs
to be preserved in order that the Givens rotations are performed quickly.

1 Variables are centered using the method of provisional means for improved
accuracy of the computations. The final estimate for the intercept and the R
matrix are given for the uncentered data. This option is generally
recommended.

TOL — Tolerance used in determining linear dependence. (Input)
For RGIVN, TOL = 100 * AMACH(4) is a common choice. See the documentation for routine AMACH in
Reference Material.
Default: TOL = 1.e-5 for single precision and 2.D-14 for double precision.

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.
(Input)
Default: L.DB = size (B,1).

R — INTCEP + |IIND| by INTCEP + |IIND| upper triangular matrix containing the R matrix from a QR
decomposition of the matrix of regressors on return from the final invocation of this routine. (Output,
if IDO =0 or 1; input/output, if IDO =2 or 3)

IDO Action

lor2 The current matrix of raw sums of squares and crossproducts for

the regressors can be found as RT . diag(p) - R where diag(D) is
the diagonal matrix whose diagonal elements are the elements of
the vector D.

Oor3 The matrix of raw sums of squares and crossproducts for the

regressors can be found as RT R. Elements of the appropriate
row(s) of R are set to 0.0 if linear dependence of the regressors is
declared.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

D — Vector of length INTCEP + |IIND| containing scale factors for fast Givens transformations. (Output,
if IDO =0 or 1; input/output, if IDO =2 or 3)

IDO Action

lor2 D contains the current scale factors associated with the fast Giv-
ens transformations.

Oor3 Each element of D is set to 1.0.

IRANK — Rank of R. (Output, if IDO =0 or 3)
IRANK less than INTCEP + | IIND| indicates linear dependence of the regressors was declared.

DFE — Degrees of freedom for error on return from the final invocation of this routine. (Output, if IDO =0
or 1; Input/Output, if IDO =2 or 3)
Prior to the final invocation of RGIVN, DFE is the sum of the frequencies.
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SCPE — |IDEP| by | IDEP| matrix containing error (residual) sums of squares and crossproducts. (Out-
put, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3)
SCPE(m, n) contains the current sum of crossproducts of residuals for the m-th and n-th dependent
variables. If IDEP = 0, SCPE is not referenced and can be a 1 by 1 array.

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-
gram. (Input)

Default: LDSCPE = size (SCPE,1).

NRMISS — Number of rows of data encountered in calls to RGIVN that contain any missing values for the
independent, dependent, weight, or frequency variables. (Output, if IDO = 0 or 1; Input/Output, if
IDO =2 or 3)

NaN (not a number) is used as the missing value code. Any row of X containing NaN as a value of the
independent, dependent, weight, or frequency variables is omitted from the analysis.

XMIN — Vector of length INTCEP + |IIND| containing the minimum values for each of the regressors.
(Output, if IDO =0 or 1; Input/Output, if IDO = 2 or 3)

XMAX — Vector of length INTCEP + |IIND| containing the maximum values for each of the regressors.
(Output, if IDO = 0 or 1; Input/Output, if IDO =2 or 3)

FORTRAN 90 Interface

Generic: CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B [, ...1)
Specific: The specific interface names are S_RGIVN and D_RGIVN.

FORTRAN 77 Interface

Single: CALL RGIVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP, INDDEP, IFRQ,
IWT, ICEN, TOL, B, LDB, R, LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)
Double: The double precision name is DRGIVN.
Description

Routine RGIVN fits a multivariate linear regression model. (See the chapter introduction for a description of
the multivariate linear regression model.) The routine RGIVN is designed so that multiple invocations can be
made. In this case, zero, one, or several rows of the data set can be input for each invocation of RGIVN (with
ID0=1,2,2,...,2,3). Alternatively, one invocation of RGIVN (with IDO = 0) can be made with the entire data
set contained in X. Routine RSTAT can be invoked after the wrap-up computations are performed by RGIVN
to compute and print summary statistics related to the fitted regression.

Routine RGIVN performs an orthogonal reduction of the matrix of regressors to upper triangular form. The
reduction is based on fast Givens transformations. (See routines SROTMG and SROTM, Golub and Van Loan
1983, pages 156-162, Gentleman 1974.) This method has two main advantages: (1) the loss of accuracy result-
ing from forming the crossproduct matrix used in the normal equations is avoided, (2) data can be
conveniently added or deleted to take advantage of the previous computations performed.

With ICEN = 1, the current means of the independent and dependent variables are used to center the data for
improved accuracy. Let x; be a column vector containing the i-th row of data for the independent variables.
Let X, represent the mean vector for the independent variables given the data for observations 1, 2, ..., i. The
mean vector is defined to be
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- 2 -1l X
R
=175
where the w/’s and f;’s are the weights and frequencies, respectively. The i-th row of data has x; subtracted
from it, and then wf; is multiplied by the factor a;/a; 1 where

i

Although a crossproduct matrix is not computed, the validity of this centering operation can be seen from the
following formula for the sum of squares and crossproducts matrix:

N il o B %) =Y s = 5= %)
i=1

i=2

An orthogonal reduction on the centered matrix is computed. When wrap-up computations

(IDO =3 or IDO = 0) are performed, the first rows of R and B are updated so that they reflect the statistics for
the original (uncentered) data. This means that the estimate of the intercept and the R matrix are for the
uncentered data.

If the i-th regressor is a linear combination of the first i - 1 regressors, the i-th diagonal element of R will be
close to zero (exactly zero if infinite precision arithmetic could be used) prior to the wrap-up computations.
When performing the wrap-up computations, RGIVN checks sequentially for linear dependent regressors.
Linear dependence of the regressors is declared if any of the following three conditions is satisfied:

# A regressor equals zero, as determined from XMIN and XMAX.

# Two or more regressors are constant, as determined from XMIN and XMAX.

. \/ 1-—- Rlz. 1,2,...i-1 is less than or equal to TOL. Here, R;.1 5 ... ;1 is the multiple correlation

coefficient of the i-th independent variable with the first i - 1 independent variables. If no
intercept is in the model (INTCEP = 0) the “multiple correlation” coefficient is computed
without adjusting for the mean.

When a dependence is declared, R is changed in the wrap-up computations so as to reflect the deletion of the
i-th regressor from the model. On completion of the wrap-up computations, if the i-th regressor is declared to

be dependent upon the previous i - 1 regressors, then the R and B matrices will have all elements in their i-th
rows set to zero.

Comments

1. Workspace may be explicitly provided, if desired, by use of R2ZIVN/DR2IVN. The reference is:

CALL R2IVN (IDO, NROW, NCOL, X, LDX, INTCEP, IIND, INDIND, IDEP, INDDEP, IFRQ, IWT,
ICEN, TOL, B, LDB, R, LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX, WK)

The additional argument is:
WK — Work vector of length INTCEP + |IIND| + |IDEP|
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2. Informational errors

Type Code Description

4 1 Negative weight encountered.

4 2 Negative frequency encountered.
Examples
Example 1

The first example uses a data set from Draper and Smith (1981, pages 629-630). This data set is put into the
matrix X by routine GDATA in Chapter 19, “Utilities”. There is 1 dependent variable and 4 independent vari-
ables. RGIVN is invoked to fit the regression model with the IDO = 0 option, so all computations are
performed in one call.

USE RGIVN_INT
USE GDATA_INT
USE WRRRN_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER LDB, LDCOEF, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, NRX

PARAMETER (LDSCPE=1, NCOEF=5, NCOL=5, NDEP=1, NRX=13, &
LDB=NCOEF, LDCOEF=NCOEF, LDR=NCOEF, LDX=NRX)

INTEGER I, IDEP, IIND, INDDEP(1l), INDIND(1l), &
IRANK, NOBS, NOUT, NRMISS, NVAR
REAL B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF), &

SCPE (LDSCPE,NDEP) , X(LDX,NCOL), XMAX(NCOEF), &
XMIN (NCOEF)

CALL GDATA (5, X, NOBS, NVAR)

IIND = -4

IDEP = -1

CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, r=r, d=d, &
irank=irank, dfe=dfe, scpe=scpe, nrmiss=nrmiss, &
xmin=xmin, xmax=xmax)

CALL WRRRN ('B', B)
CALL WRRRN ('R', R)
CALL UMACH (2, NOUT)
WRITE (NOUT, *)

WRITE (NOUT, *) 'Regressor XMIN XMAX'
DO 10 I=1, NCOEF
WRITE (NOUT, ' (1X,I5,2X,2F9.1)') I, XMIN(I), XMAX(I)

10 CONTINUE
WRITE (NOUT, *

)
WRITE (NOUT,*) 'IRANK = ', IRANK
WRITE (NOUT,*) 'DFE = ', DFE, ' SCPE(1,1) = ', SCPE(1l,1)
WRITE (NOUT,*) 'NRMISS = ', NRMISS

END
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Output

B
1 62.41
2 1.55
3 0.51
4 0.10
5 -0.14
R

1 2 3 4 5
1 3.6 26.9 173.6 42.4  108.2
2 0.0 20.4 12.3  -18.3  -14.2
3 0.0 0.0 52.5 1.1 -54.6
4 0.0 0.0 0.0 12.5 -12.9
5 0.0 0.0 0.0 0.0 3.4
Regressor XMIN XMAX

1 1.0 1.0

2 1.0 21.0

3 26.0 71.0

4 4.0 23.0

5 6.0 60.0
IRANK = 5
DFE = 8.00000 SCPE(1,1) = 47.8637
NRMISS = 0
Example 2

The data for the second example are taken from Maindonald (1984, pages 203-204). The data are saved in the
matrix X. Here, the data are input into RGIVN a row at a time. The data set is small for clarity. However, the
approach is generally useful when the data set is large and the entire data set cannot be stored in X. A multi-
variate regression model containing two dependent variables and three independent variables is fit.

USE RGIVN_INT
USE WRRRN_INT
USE UMACH_INT

IMPLICIT
INTEGER

PARAMETER

INTEGER

REAL

DATA
DATA
DATA

(x(1,
(x(2,
(X(3,

NONE

INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, &
NIND, NOBS, J

(INTCEP=1, NCOL=5, NDEP=2, NIND=3, NOBS=9, &
LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF, &

LDR=NCOEF)

I, IDEP, IDO, IIND, INDDEP(1l), INDIND(1l), IRANK, &
NOUT, NRMISS, NROW

B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF), &

SCPE (LDSCPE, NDEP) ,
XMIN (NCOEF)

TOL, X(LDX,NCOL), XMAX(NCOEF), &

J),J=1,NCoL)/7.0, 5.0, 6.0, 7.0, 1.0/
J),J=1,NCoOL)/2.0, -1.0, 6.0, -5.0, 4.0/
J),J=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
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DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
1
NROW = 1
ITND = -NIND
IDEP = -NDEP
DO 10 T=1, 9
IF (I .EQ. 1) THEN
IDO =1
ELSE IF (I .EQ. 9) THEN
IDO = 3
ELSE
IDO = 2
END TIF
CALL RGIVN (X(I:I, 1:NCOL), IIND, INDIND, IDEP, INDDEP, &

B, IDO=IDO,

R=R, D=D,IRANK=IRANK, DFE=DFE, &

SCPE=SCPE, NRMISS=NRMISS, xmin=xmin, xmax=xmax)

10 CONTINUE

CALL WRRRN ('B', B)
CALL WRRRN ('R', R)
CALL WRRRN ('SCPE', SCPE)
CALL UMACH (2, NOUT)
WRITE (NOUT, *)
WRITE (NOUT, *) 'Regressor XMIN XMAX'
DO 20 I=1, NCOEF
WRITE (NOUT, ' (1X,I5,2X,2F9.1)') I, XMIN(I), XMAX(I)
20 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,*) 'IRANK = ', IRANK
WRITE (NOUT,*) 'DFE = ', DFE
WRITE (NOUT,*) 'NRMISS = ', NRMISS
END
Output
B
1 2
1 7.733 -1.633
2 -0.200 0.400
3 2.333 0.167
4 -1.667 0.667
R
1 2 3 4
1 3.00 6.00 3.00 12.00
2 0.00 10.00 4.00 2.00
3 0.00 0.00 4.00 2.00
4 0.00 0.00 0.00 6.00
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SCPE

1 2

1 4.0 20.0

2 20.0 110.0

Regressor XMIN XMAX
1 1.0 1.0
2 -3.0 7.0
3 -1.0 5.0
4 0.0 7.0

IRANK = 4

DFE = 5.00000

NRMISS = 0

Example 3

The data for the third example are taken from Maindonald (1984, pages 104-106). The constant regressor and

the independent variables X, X5, and X3 are linearly dependent
=1 1
<X 372 T X 72X )

USE RGIVN_INT
USE WRRRN_INT
USE UMACH_INT

INTEGER INTCEP, LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, &
NIND, NOBS
PARAMETER (INTCEP=1, NCOL=5, NDEP=1, NIND=4, NOBS=9, &
LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF, &
LDR=NCOEF)
1
INTEGER I, IDEP, IIND, INDDEP(1l), INDIND(1l), &
IRANK, NOUT, NRMISS, NROW
REAL B(LDB,NDEP), D(NCOEF), DFE, R(LDR,NCOEF), &
SCPE (LDSCPE,NDEP) , TOL, X(LDX,NCOL), XMAX(NCOEF), &
XMIN (NCOEF)
1
DATA (X(1,J),J=1,NCOL)/-1.0, 0.0, -0.5, 1.0, 0.0/
DATA (X(2,J),J=1,NCOL)/3.0, 0.0, 3.5, 1.0, 0.0/
DATA (X(3,J),J=1,NCOL)/2.0, -2.0, 3.5, -2.0, -2.0/
DATA (X(4,J),J=1,NCOL)/-2.0, -1.0, -1.0, 1.0, 1.0/
DATA (X(5,J),J=1,NCOL)/-1.0, 1.0, -1.0, -1.0, -1.0/
DATA (X(6,J),J=1,NCOL)/3.0, 3.0, 2.0, 1.0, 3.0/
DATA (X(7,J),J=1,NCOL)/2.0, 2.0, 1.5, 2.0, 4.0/
DATA (X(8,J),J=1,NCOL)/-2.0, -1.0, -1.0, -1.0, -2.0/
DATA (X(9,J),J=1,NCOL)/2.0, 1.0, 2.0, 1.0, 3.0/
|
NROW = NOBS
IIND = -NIND
IDEP = -NDEP
CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, r=r, d=d, &
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irank=irank, dfe=dfe, scpe=scpe, nrmiss=nrmiss, &
xmin=xmin, xXmax=xmax)

CALL WRRRN ('B', B)
CALL WRRRN ('R', R)
CALL UMACH (2, NOUT)
WRITE (NOUT, *)

WRITE (NOUT,*) 'Regressor Minimum Maximum'
DO 10 I=1, NCOEF
WRITE (NOUT, ' (1X,I5,2X,2F9.1)') I, XMIN(I), XMAX(I)

10 CONTINUE
WRITE (NOUT, *

)
WRITE (NOUT,*) 'IRANK = ', IRANK
WRITE (NOUT,*) 'DFE = ', DFE, ' SCPE(1,1) = ', SCPE(1,1)
WRITE (NOUT,*) 'NRMISS = ', NRMISS
END
Output
B
1 0.056
2 0.167
3 0.500
4 0.000
5 1.000
R
1 2 3 4 5
1 3.000 2.000 1.000 3.000 1.000
2 0.000 6.000 2.000 5.000 1.000
3 0.000 0.000 4.000 -2.000 2.000
4 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 3.000

Regressor Minimum Maximum

1 1.0 1.0

2 -2.0 3.0

3 -2.0 3.0

4 -1.0 3.5

5 -2.0 2.0
IRANK = 4
DFE = 5.00000 SCPE(1,1) = 6.00000
NMISS = 0
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RGLM

Fits a multivariate general linear model.

Required Arguments

X — |NROW| by NCOL matrix containing the data. (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification
variables. (Input)

NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.

(Input)

INDEF — Index vector of length NVEF(1) + NVEF(2) + ... + NVEF(NEF). (Input)
The first NVEF(1) elements give the column numbers of X for each variable in the first effect; the next
NVEF(2) elements give the column numbers for each variable in the second effect; and so on. The last
NVEF(NEF) elements give the column numbers for each variable in the last effect.

IDEP — Dependent variable option. (Input)
The absolute value of IDEP is the number of dependent (response) variables. The sign of IDEP speci-
fies the following options:

IDEP
<0

>0

Action

The last -IDEP columns of X contain the dependent (response) variables. That is, col-
umns NCOL + IDEP + 1, NCOL + IDEP + 2, ..., NCOL contain the dependent variables.

The data for the IDEP dependent variables are in the columns of X whose column
numbers are given by the elements of INDDEP.

There are no dependent variables. (Generally, this option is not used. However, it is
possible to get the R matrix from a QR decomposition of a matrix of regressors in this
way.)

INDDEP — Index vector of length IDEP containing the column numbers of X that are the dependent
(response) variables. (Input, if IDEP is positive)
If IDEP is nonpositive, INDDEP is not referenced and can be a vector of length one.

MAXCL — An upper bound on the sum of the number of distinct values taken on by each classification
variable. (Input)

B — NCOEF by | IDEP| matrix containing on return from the final invocation of this routine a least-squares

solution B for the regression coefficients. (Output, if TDO = 0 or 1; Input/Output, if TDO = 2 or 3)
Here, NCOEF = IRBEF(NEF + 1) - 1 is the number of coefficients in the model. If INTCEP =1, row 1 is
for the intercept. Column j is for the j-th dependent variable.

IDO

lor2

Oor3

Action
A current least-squares solution is given by a solution x to the
equationR * x =B

A least-squares solution for the regression coefficients is
returned in B. Elements of the appropriate row(s) of B are set to
0.0 if linear dependence of the regressors is declared.
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Optional Arguments

IDO — Processing option. (Input)
Default: IDO = 0.

IDO Action
0 This is the only invocation of RGLM for this data set, and all the data are input at once.
1 This is the first invocation, and additional calls to RGLM will be made. Initialization

and updating for the data in X are performed.

2 This is an intermediate invocation of RGLM, and updating for the data in X is
performed.
3 This is the final invocation of this routine. Updating for the data in x and wrap-up

computation are performed.

NROW — The absolute value of NROW is the number of rows of data currently input in X. (Input)
NROW may be positive, zero, or negative. Negative NROW means that the -NROW rows of data are to be
deleted from some aspects of the analysis, and this should be done only if IDO is 2 or 3 and the wrap-
up computations have not been performed. When a negative value is input for NROW, it is assumed
that each of the -NROW rows of X has been input (with positive NROW) in previous invocations of
RGIVN. Use of negative values of NROW should be made with care and with the understanding that
XMIN, XMAX, and CLVAL cannot be updated properly in this case. It is also possible that a constant vari-
able in the remaining data will not be recognized as such.
Default: NROW = size (X,1).

NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.

1 An intercept is in the model.

NCLVAR — Number of classification variables. (Input)
Default: NCLVAR = size (INDCL,1).

NEF — Number of effects (sources of variation) in the model excluding error. (Input)
Default: NEF = size (NVEF,1).

IFRQ — Frequency option. (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the
frequencies. If X(I, IFRQ) = 0.0, none of the remaining elements of row I of X are referenced and
updating of statistics is skipped for row I.
Default: IFRQ = 0.

IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the
weights.
Default: TWT = 0.
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IDUMMY — Dummy variable option. (Input)
Default: 1DUMMY = 1.
Some indicator variables are defined for the I-th class variable as follows: Let
J = NCLVAL(1) + NCLVAL(2) + ... + NCLVAL(T - 1). NCLVAL(TI) indicator variables are defined such
thatfork =1, 2, ..., NCLVAL(T) the K-th indicator variable for observation number IOBS takes the
value 1.0 if X(IOBS, INDCL(I)) = CLVAL(J + K) and equals 0.0 otherwise. Dummy variables are gener-
ated from these indicator variables, and restrictions may be applied as given by the following:

IDUMMY Description

0 The NCLVAL(T) indicator variables are the dummy variables. The usual bal-
anced-data restrictions on the regression parameters are applied as part of
the wrap-up computations regardless of whether the data are balanced.

1 The NCLVAL(T) indicator variables are the dummy variables.

2 1 indicator variables are used as the dummy variables. The indicator vari-
able associated with the class value given in the first row of X on the first
invocation is omitted.

ICEN — Data centering option. (Input)
If INTCEP = 0, ICEN must equal 0.
Default: ICEN = 1.

ICEN Action

0 No centering. This option should be used when (1) the data are already centered, (2)
there is no intercept in the model, or (3) the regressors for a large percentage of the
data are zero, and sparsity of the problem needs to be preserved in order that the fast
Givens transformations are performed quickly

1 Variables are centered using the method of provisional means for improved accuracy
of the computations. The final estimate for the intercept along with the R matrix are
given for the uncentered data. This option is generally recommended.

TOL — Tolerance used in determining linear dependence. (Input)
For RGLM, TOL = 100 * AMACH(4) is a common choice. See the documentation for IMSL routine AMACH
in Reference Material.
Default: TOL = 1.e-5 for single precision and 2.d —14 for double precision.

NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-
able. (Output, if IDO = 0 or 1; Input/Output, if IDO = 2 or 3) NCLVAL(I) is the number of distinct
values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + ... + NCLVAL(NCLVAR) containing the values of the
classification variables. (Output, if IDO = 0 or 1; Input/Output, if IDO =2 or 3)
Since in general the length of CLVAL will not be known in advance, MAXCL (an upper bound for this
length) should be used for purposes of dimensioning CLVAL. The first NCLVAL(1) elements contain the
values of the first classification variable; the next NCLVAL(2) elements contain the values of the second
classification variable; and so on. The last NCLVAL(NCLVAR) elements contain the values of the last
classification variable. If IDUMMY = 0 or 1, the values are in ascending order for each classification vari-
able. If IDUMMY = 2, the last value for each classification variable is the value associated with the
indicator variable omitted from the model. The remaining values for each classification variable are in
ascending order.
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IRBEF — Index vector of length NEF + 1. (Output, if IDO = 0 or 1; Input/Output, if IDO =2 or 3)
ForI=1,2,...,,NEF, rows IRBEF(I), IRBEF(I) + 1, ..., IRBEF(I + 1) - 1 of B correspond to the I-th
effect.

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.
(Input)

Default: LDB = size (B,1).

R — NCOEF by NCOEF upper triangular matrix containing, on return from the final invocation of this rou-
tine, the R matrix from a QR decomposition of the matrix of regressors. (Output, if IDO =0 or 1;
Input/Output, if IDO =2 or 3)

Upon completion of the wrap-up computations, a zero row indicates a nonfull rank model. If
IDUMMY = 0, a negative diagonal element of R indicates that the associated row corresponds to a sum-
mation restriction.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

D — Vector of length NCOEF. (Output, if IDO = 0 or 1; input/output, if IDO =2 or 3)

IDO Action

lor2 D contains the current scale factors associated with the fast Giv-
ens transformations. The current matrix of uncorrected sums of
squares and crossproducts for the regressors can be found as
RT . diag(D) - R where diag(D) is the diagonal matrix whose
diagonal elements are the elements of D.

Oor3 Each element of D is set to 1.0.

IRANK — Rank of R. (Output, if IDO =0 or 3)
IRANK less than NCOEF indicates linear dependence of the regressors was declared.

DFE — Degrees of freedom for error on return from the final invocation of this routine. (Output, if IDO =0
or 1; input/output, if IDO =2 or 3)
Prior to the final invocation, DFE is the sum of the frequencies.

SCPE — | IDEP| by | IDEP| matrix containing error (residual) sums of squares and crossproducts. (Out-
put, if IDO = 0 or 1; input/output, if IDO =2 or 3)
SCPE(M, N) is the current sum of crossproducts of residuals for the M-th and N -th dependent variables.

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDSCPE = size (SCPE,1).

NRMISS — Number of rows of data encountered in calls to RGLM containing NaN (not a number) for the
independent, dependent, weight, and/or frequency variables. (Output, if IDO = 0 or 1, Input/Output,
if IDO =2 or 3)
If a row of data contains NaN for any of these variables, that row is excluded from the computations.

XMIN — Vector of length NCOEF containing the minimum values for each of the regressors. (Output, if
IDO = 0 or 1; Input/Output, if IDO =2 or 3)

XMAX — Vector of length NCOEF containing the maximum values for each of the regressors. (Output, if
IDO =0 or 1; Input/Output, if IDO = 2 or 3)

FORTRAN 90 Interface

Generic: CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B [, ...])
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Specific: The specific interface names are S_RGLM and D_RGLM.

FORTRAN 77 Interface

Single: CALL RGLM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF,
IDEP, INDDEP, IFRQ, IWT, IDUMMY, ICEN, TOL, MAXCL, NCLVAL, CLVAL, IRBEF, B, LDB,
R, LDR, D, IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX)

Double: The double precision name is DRGLM.

Description

Routine RGLM fits a multivariate linear regression model. (See the chapter introduction for a description of
the multivariate linear regression model.) The routine RGLM is designed so that multiple invocations can be
made. In this case, zero, one, or several rows of the data set can be input for each invocation of RGLM (with
ID0=1,2,2,..,2,3). Alternatively, one invocation of RGLM (with IDO = 0) can be made with the entire data
set contained in X. Routines RSTAT and RCASE can be invoked after the wrap-up computations are per-
formed by RGLM to compute and print summary statistics and case statistics related to the fitted regression.

The data matrix can contain classification variables as well as continuous variables. The specification of a
general linear model through the arguments INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF is discussed in the
chapter introduction.

Regressors for effects composed solely of continuous variables are generated as powers and crossproducts.
Consider a data matrix containing continuous variables as columns 3 and 4. The effect (3, 3) generates a
regressor whose i-th value (i = 1, 2, ..., n) is the square of the i-th value in column 3. The effect (3, 4) generates
a regressor whose i-th value is the product of the i-th value in column 3 with the i-th value in column 4.

Regressors for an effect containing a single classification variable are generated using indicator variables. Let
the classification variable A take on values a4, g, ..., a,, (stored in that order in CLVAL). From this classifica-

tion variable, n indicator variables I} are created. For k=1, 2, ..., n we have

_{lﬁA=%
k 0 otherwise

For each classification variable, another set of variables is created from the indicator variables. We call these
new variables dummy variables. Dummy variables are generated from the indicator variables in one of two
manners: (1) the dummies are the n indicator variables, or (2) the dummies are the first n - 1 indicator vari-
ables. In particular, for IDUMMY = 0 or IDUMMY = 1, the dummy variables are A, = I (k=1, 2, ..., n). For

IDUMMY = 2, the dummy variables are Ay = I} (k=1,2,...,n - 1).

Let m; be the number of dummies generated for the j-th classification variable. Suppose there are two classifi-
cation variables A and B with dummies A4, A, ..., A,,;; and By, By, ..., B, respectively. The regressors
generated for an effect composed of two classification variables A and B are
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A®B =<A1, 45, ...,Am1>®<31, B,, ...,Bm2>
= <AlBl, A\By, ..., 4B, 4By, A3By, ..., AyB,,, Ay By, A, By, .. ,Am13m2>

More generally, the regressors generated for an effect composed of several classification variables and several
continuous variables are given by the Kronecker products of variables, where the order of the variables is
specified in INDEF. Consider a data matrix containing classification variables in columns 1 and 2 and contin-
uous variables in columns 3 and 4. Label these four columns A, B, X1, and X, respectively. The regressors

generated by the effect (1, 2, 3, 3, 4) are A ® B ® X1 X1 X>.

Routine RGLM performs an orthogonal reduction of the matrix of regressors to upper triangular form. The
reduction is based on fast Givens transformations. (See routines SROTMG and SROTM, Golub and Van Loan
1983, pages 156-162, Gentleman 1974.) This method has two main advantages: (1) the loss of accuracy result-
ing from forming the crossproduct matrix used in the normal equations is avoided, and (2) data can be
conveniently added or deleted to take advantage of the previous computations performed.

With ICEN = 1, the current means of the regressors and dependent variables are used to center the data for
improved accuracy. Let x; be a column vector containing the i-th row of data for the regressors. Let X, repre-

sent the mean vector for the regressors given the data for observations
1,2, ...,i. The mean vector is defined to be

_ zlj=lefjxj
X =—"—

SIS

where the /s and f/’s are the weights and frequencies, respectively. The i-th row of data has X, subtracted

from it, and then, wf; is multiplied by the factor 4;/a; 1 where

i
i Ej_l i

Although a crossproduct matrix is not computed, the validity of this centering operation can be seen from the
following formula for the sum of squares and crossproducts matrix:

n

N il o= B %) =Y s = %) %)

i=1 i=2

An orthogonal reduction on the centered matrix is computed. When wrap-up computations (IDO = 3 or
IDO = 0) are performed, the first rows of R and B are updated so that they reflect the statistics for the original
(uncentered) data. This means that the R matrix and the estimate of the intercept are for the uncentered data.

If the i-th regressor is a linear combination of the first i - 1 regressors, the i-th diagonal element of R will be
close to zero (exactly zero if infinite precision arithmetic could be used) prior to the wrap-up computations.
When performing the wrap-up computations, RGLM checks sequentially for linear dependent regressors. Lin-
ear dependence of the regressors is declared if any of the following three conditions is satisfied:
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& A regressor equals zero, as determined from XMIN and XMAX.

# Two or more regressors are constant, as determined from XMIN and XMAX.

oy1- R% i1 is less than or equal to TOL. Here R; .1, 5, ..., ;.1 is the multiple correlation
i1,2,...i—1 q i1 27 -+ i1 p
coefficient of the i-th regressor with the first i - 1 regressors. If no intercept is in the model
(INTCEP = 0) the ‘multiple correlation” coefficient is computed without adjusting for the mean.

When a dependence is declared, R is changed in the wrap-up computations so as to reflect the deletion of the
i-th regressor from the model. On completion of the wrap-up computations, if thei-th regressor is declared to
be dependent upon the previous i - 1 regressors, then the R and B matrices will have all elements in their i-th
rows set to zero.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2LM/DR2LM. The reference is:

CALL R2LM (IDO, NROW, NCOL, X, LDX, INTCEP, NCLVAR, INDCL, NEF, NVEF, INDEF, IDEP,
INDEP, IFRQ, IWT, IDUMMY, ICEN, TOL, MAXCL, NCLVAL, VAL, IRBEF, B, LDB, R, LDR, D,
IRANK, DFE, SCPE, LDSCPE, NRMISS, XMIN, XMAX, IWK, WK)

The additional arguments are as follows:
IWK — Work vector of length max(MAXB, NCLVAR).
WK — Work vector of length MAXB + |IDEP| + 2.

2. Informational errors

Type Code Description

4 1 Negative weight encountered.

4 2 Negative frequency encountered.

4 7 MAXCL is too small. Increase MAXCL and the dimension of CLVAL.

4 8 LDB or LDR is too small. One or more of the dimensions of B, R, D, XMIN, and

XMAX must be increased.

3. Let the data matrix X = (A, B, X7, Y) where A and B are classification variables, X;is a continuous inde-
pendent variable, and Y is a response variable. The model containing an intercept and the effects A, B,
AB, X;, AX1, BXq, and ABXj is specified as follows: INTCEP = 1, NCLVAR = 2, INDCL = (1, 2), NEF =7,
NVEF=(1,1,2,1,2,2,3), INDEF =(1,2,1,2,3,1,3,2,3,1,2,3), IDEP = 1, and INDDEP = (4).

For this model suppose NCLVAL(1) = 2, NCLVAL(2) = 3, and
CLVAL = (1.0, 2.0, 1.0, 2.0, 3.0). Let A1, Ay, By, By, and Bj, be the associated indicator variables. For each

IDUMMY option the regressors following the intercept in their order of appearance in the model are
given as follows:
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IDUMMY
Oor1l

Regressors

A1, Ay, By, By, B3, A1Bq, A1By, A1B3, ApBy, AyBy, ApB3, X1,
A1Xq, ApX1B1Xq, BpXq, B3Xq, A1B1Xq, A1Bo X1, A1B3Xy,
ApB1X1, AxBrXq, AxB3Xy

Ay, By, By, A1By, A1By, X1, A1Xq, B1Xq, BoXq, A1B1X,
A1BrXy

Within a group of regressors corresponding to an interaction effect, the indicator variables composing
the regressors change most rapidly for the last classification variable, change next most rapidly for the
next to last classification variable, etc.

4. If NROW is negative, no downdating of XMIN, XMAX, NCLVAL, and CLVAL can occur.

Examples

Example 1

A one-way analysis of covariance model is fitted to the turkey data discussed by Draper and Smith (1981,
pages 243-249). The response variable is turkey weight y (in pounds). There are three groups of turkeys cor-
responding to the three states where they were reared. The age of a turkey (in weeks) is the covariate. The
explanatory variables are group, age, and interaction. The model is

yij=u+0(i+[3xi]-+[3ix,-j+£i]- i=1,2,3;j=1,2,...,7’li

where &3 = 0 and B3 = 0. Here, the IDUMMY = 2 option is used. The fitted model gives three separate lines, one

for each state where the turkeys were reared.

USE IMSL_LIBRARIES

IMPLICIT

INTEGER

PARAMETER

INTEGER

REAL

CHARACTER

DATA
DATA
DATA
DATA
DATA

NONE

SPECIFICATIONS FOR PARAMETERS
IDEP, INTCEP, LDB, LDR, LDSCPE, LDX, MAXB, MAXCL, &
NCLVAR, NCOL, NEF, NROW
(IDEP=1, INTCEP=1, LDX=13, MAXB=6, MAXCL=3, NCLVAR=1l, &
NCOL=3, NEF=3, NROW=13, LDB=MAXB, LDR=MAXB, &
LDSCPE=IDEP)

I, IDUMMY, INDCL(NCLVAR), INDDEP (IDEP), &

INDEF (4), IRANK, IRBEF (NEF+l), J, &

NCLVAL (NCLVAR) , NCOEF, NOUT, NRMISS, NVEF (NEF)
B(LDB, IDEP), CLVAL(MAXCL), D(MAXB), DFE, &
R(LDR,MAXB), SCPE(LDSCPE,IDEP), TOL, X(LDX,NCOL), &
XMAX (MAXB) , XMIN (MAXB)

CLABEL(7) *6, RLABEL(1)*4

J),J=1,3) /25, 13.8, 3/
J),J=1,3) /28, 13.3, 1/
J),J=1,3) /20, 8.9, 1/
J),Jg=1,3) /32, 15.1, 1/
J),J=1,3) /22, 10.4, 1/
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DATA (X(6,J),J=1,3) /29, 13.1, 2/
DATA (X(7,J),J3=1,3) /27, 12.4, 2/
DATA (X(8,J),d=1,3) /28, 13.2, 2/
DATA (X(9,J),d0=1,3) /26, 11.8, 2/
DATA (X(10,J),J=1,3) /21, 11.5, 3/
DATA (X(11,J),J=1,3) /27, 14.2, 3/
DATA (X(12,J),J=1,3) /29, 15.4, 3/
DATA (X(13,J),J=1,3) /23, 13.1, 3/
DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/3, 1, 1, 3/, INDDEP/2/
DATA CLABEL/' ', 'MU', 'ALPHAl', 'ALPHA2', 'BETA', 'BETAl', &
'BETA2"'/
DATA RLABEL/'NONE'/
1
IDUMMY = 2
CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
idummy=idummy, nclvar=nclvar, nclval=nclval, &
clval=clval, irbef=irbef, r=r, d=d, irank=irank, &
dfe=dfe, scpe=scpe, nrmiss=nrmiss, xmin=xmin, &
Xmax=xmax)
1
CALL UMACH (2, NOUT)
WRITE (NOUT, *) 'NRMISS = ', NRMISS
WRITE (NOUT,*) 'IRANK = ', IRANK, ' DFE = ', DFE, ' v/ &
'"SCPE(1,1) = ', SCPE(1,1)
J =20
DO 10 I=1, NCLVAR
CALL WRRRN ('Class values', CLVAL((J+1):), 1, NCLVAL(I), 1)
J = J + NCLVAL(I)
10 CONTINUE
NCOEF = IRBEF(NEF+1) - 1
CALL WRRRN ('XMIN', XMIN, 1, NCOEF, 1)
CALL WRRRN ('XMAX', XMAX, 1, NCOEF, 1)
CALL WRIRN ('IRBEF', IRBEF, 1, NEF+1, 1)
CALL WRRRN ('R-MATRIX', R)
CALL WRRRL ('B' B, RLABEL, CLABEL, 1, NCOEF, 1)
1
END
Output
NRMISS = 0
IRANK = 6 DFE = 7.00000 SCPE(1,1) = 0.706176
Class values
1 2 3
1.000 2.000 3.000
XMIN
1 2 3 4 5 6
1.00 0.00 0.00 20.00 0.00 0.00
XMAX
1 2 3 4 5 6
1.00 1.00 1.00 32.00 32.00 29.00
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IRBEF

1 2 3 4
2 4 5 7
R-MATRIX
1 2 3 4 5 6
1 3.61 1.11 1.11 93.47 28.29 30.51
2 1.66 -0.74 -1.02 42.43 -20.34
3 1.49 3.73 0.00 40.99
4 11.66 7.80 0.43
5 5.49 -0.61
6 2.11
B
MU ALPHA1 ALPHA2 BETA BETA1l BETA2
2.475 -3.454 -2.775 0.445 0.06104 0.025
20.0 =
i Georgia  +
] Virginia  ©
. Wisconsin &
17.5
—~15.0 -
2 ]
= |
L1255
£ ]
T .
= 10.0
7.5
E’-EI LN A I R N D I N A A N N B |
15.0 20.0 25.0 30.0 35.0
Age (Weeks)
Figure 2.4 — Plot of Turkey Weights and Fitted Lines by State
Example 2

A two-way analysis-of-variance model is fitted to balanced data discussed by Snedecor and Cochran (1967,
Table 12.5.1, page 347). The responses are the weight gains (in grams) of rats fed diets varying in two compo-

nents — level of protein and source of protein. The model is

i=1,2;j=1,2,3;k=1,2,...,10

where

Yij= M+ O+ Bt Yt € 5k
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2

Zai: 0; Z,Bj

i=1

3
=1

J =1 J=1

Here, the IDUMMY = 0 option is used.

USE IMSL_LIBRARIES

IMPLICIT
INTEGER

PARAMETER

INTEGER

NCLVAL (NCLVAR) ,

REAL

CHARACTER

DATA X/73.0,

117.0,
77.0,
108.0,
51.0,
98.0,
81.0,

10*1.0,
DATA INDCL/2,
DATA CLABEL/' ',

'BETA3 "',

'GAMMA22 "',

NONE

IDEP, LDB, LDR, LDSCPE, LDX, LINDEF, MAXB, MAXCL,
NCLVAR, NCOL, NEF, NROW

(IDEP=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2, &
NCOL=3, NEF=3, NROW=60, LDB=MAXB, LDR=MAXB, &
LDSCPE=IDEP, LDX=NROW)

I, IDUMMY, INDCL(NCLVAR), INDDEP(IDEP), &

INDEF (LINDEF), INTCEP, IRANK, IRBEF(NEF+1), J, &
NCOEF, NOUT, NRMISS, NVEF (NEF)

B(LDB, IDEP), CLVAL (MAXCL),
R(LDR,MAXB), SCPE(LDSCPE,IDEP),
XMAX (MAXB) , XMIN (MAXB)

CLABEL (MAXB+1) *7, RLABEL (1) *4

D(MAXB), DFE, &
X (LDX,NCOL) , &

102.0,
111.0,
86.0,

91.0,
72.0,

118.0, 104.0, 81.0, 107.0, 100.0, 87.0,
98.0, 74.0, 56.0, 111.0, 95.0, 88.0,
92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0,
120.0, 105.0, 90.0, 76.0, 90.0, 64.0,
90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0,
74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0,
97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0, &
10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/
3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/,
'MU', 'ALPHAl', 'ALPHA2', 'BETAl', 'BETA2',
'GAMMAL1l', 'GAMMAl2', 'GAMMAl3', 'GAMMA21l', &
'GAMMA23 "'/

DATA RLABEL/ 'NONE'/

1

IDUMMY = 0

CALL RGLM (X,

INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
idummy=idummy, nclvar=nclvar, nclval=nclval, &

clval=clval, irbef=irbef, r=r, d=d,
dfe=dfe, scpe=scpe, nrmiss=nrmiss,

Xmax=xmax)

xmin=xmin, &

82.0,

86.0,

INDDEP/1/

irank=irank, &

&

&

86.0,

&

2 3
0; Zy,.j=0forj=1,2, 3; and ZyijZOforiZI,Z

&

CALL UMACH (2, NOUT)
WRITE (NOUT,*) 'NRMISS = ', NRMISS
WRITE (NOUT,*) 'IRANK = ', IRANK, ' DFE = ', DFE, ' "/ &
'"SCPE(1,1) = ', SCPE(1,1)
J =0
DO 10 I=1, NCLVAR
CALL WRRRN ('Class Values', CLVAL((J+1):), 1, NCLVAL(I), 1)
J = J + NCLVAL(I)
10 CONTINUE
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NCOEF = IRBEF(NEF+1) - 1

CALL WRRRN ('XMIN', XMIN, 1, NCOEF, 1)

CALL WRRRN ('XMAX', XMAX, 1, NCOEF, 1)

CALL WRIRN ('IRBEF', IRBEF, 1, NEF+1, 1)

CALL WRRRN ('R-MATRIX', R, NRA=NCOEF, NCA=NCOEF, ITRING=1)
('B

CALL WRRRL ('B', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT=' (2W10.4)"')

END
Output
NRMISS = 0
IRANK = 12 DFE = 54.0000 SCPE(1,1) = 11586.0

Class Values
1 2
1.000 2.000

Class Values
1 2 3
1.000 2.000 3.000

XMIN
1 2 3 4 5 6 7 8 9 10
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 12
0.000 0.000

XMAX
1 2 3 4 5 6 7 8 9 10
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

11 12
1.000 1.000

IRBEF
1 2 3 4
2 4 7 13
R-MATRIX

1 2 3 4 5 6 7 8 9
1 7.746 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 -1.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000
3 7.746 0.000 0.000 0.000 0.000 0.000 0.000
4 -1.000 -1.000 -1.000 0.000 0.000 0.000
5 6.325 3.162 0.000 0.000 0.000
6 5.477 0.000 0.000 0.000
7 -1.000 0.000 0.000
8 -1.000 0.000
9 -1.000

10 11 12

1 0.000 0.000 0.000
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2 0.000 0.000 0.000
3 0.000 0.000 0.000
4 0.000 0.000 0.000
5 0.000 0.000 0.000
6 0.000 0.000 0.000
7 -1.000 0.000 0.000
8 0.000 -1.000 0.000
9 0.000 0.000 -1.000
10 -1.000 -1.000 -1.000
11 6.325 3.162
12 5.477

MU ALPHA1 ALPHA2 BETA1 BETA2 BETA3

87.87 7.267 -7.267 1.733 -2.967 1.233

GAMMA11l GAMMA12 GAMMA13 GAMMA21 GAMMAZ22 GAMMAZ23

3.133 -6.267 3.133 -3.133 6.267 -3.133
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RLEQU

Fits a multivariate linear regression model with linear equality restrictions H B = G imposed on the regres-
sion parameters given results from routine RGIVN after IDO = 1 and IDO =2 and prior to IDO = 3.

Required Arguments

H — NH by NCOEF matrix with the i-th row specifying a linear combination of the regression parameters
for the i-th row in the restriction H B = G. (Input)

B — NCOEF by NDEP matrix containing on return from the final invocation of this routine a least-squares
solution for the regression coefficients in the restricted model. (Input/Output)
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the B matrix from RGIVN after RGIVN’s
invocation with IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0. After the wrap-up computa-
tions are computed by RLEQU, B contains a least-squares solution for the regression coefficients in the
restricted model.

R — NCOEF by NCOEF upper triangular matrix containing, on return from the final invocation of this rou-
tine, the R matrix from the restricted regression fit. (Input/Output)
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the R matrix from RGIVN after RGIVN’s
invocation with IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0. After the wrap-up computa-
tions are computed by RLEQU, R contains the R matrix from the restricted regression fit. Elements to
the right of a diagonal element of R (that is zero) are also zero. A zero row in R indicates a nonfull rank
model. Each row of R corresponding to a restriction has a corresponding diagonal element that is neg-
ative. Each remaining row of R has a corresponding diagonal element that is positive.

D — Vector of length NCOEF containing scale factors associated with the fast Givens transformations.
(Input/Output)
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the D from RGIVN after RGIVN's invoca-
tion with IDO = 1 and IDO =2 and prior to IDO = 3 with NROW = 0. After the wrap-up computations
are computed by RLEQU, D contains all its elements set to 1.0.

DFE — Degrees of freedom for error for the restricted model on return from the final invocation of this
routine. (Input/Output)
Prior to the final invocation of this routine, DFE contains the sum of the frequencies. Invocation of
RLEQU with INVOKE = 0 and 1 requires as input the DFE from RGIVN after RGIVN’s invocation with
IDO =1 and IDO =2 and prior to IDO = 3 with NROW = 0.

SCPE — NDEP by NDEP matrix containing error (residual) sums of squares and crossproducts for the
restricted model. (Input/Output)
SCPE(M, N) is the current sum of crossproducts of residuals for the M-th and N-th dependent variables.
Invocation of RLEQU with INVOKE = 0 and 1 requires as input the SCPE matrix from RGIVN after
RGIVN's invocation with IDO = 1 and IDO = 2 and prior to IDO = 3 with NROW = 0.

Optional Arguments

INVOKE — Invocation option. (Input)
Default: INVOKE = 0.

INVOKE Action
0 This is the only invocation of RLEQU. All the restrictions are input at
once.
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1 This is the first invocation, and additional calls to RLEQU will be made.
Initialization and updating for the restrictions H B = G are performed.

2 This is an intermediate invocation of RLEQU, and updating for the
restrictions H B = G is performed.

3 This is the final invocation of this routine. Updating for the restrictions
H B = G is performed, and wrap-up computations are performed.

NH — Number of rows in the restriction H B = G. (Input)
Default: NH = size (H,1).

NCOEF — Number of coefficients in the regression equation for each dependent variable. (Input)
Default: NCOEF = size (H,2).

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDH = size (H,1).

IG — Option for G matrix. (Input)
Default: 16 = 0.

IG Restrictions
0 HB=0
1 HB=G

NDEP — Number of dependent (response) variables. (Input)
Default: NDEP = size (B,2).
G — NH by NDEP matrix containing the right-hand side of the restriction
HB=G. (Input,if 1G6=1)
If 1G =0, G is not referenced and can be a 1 by 1 array.
Default: Gis a 1 by 1 array.

LDG — Leading dimension of G exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDG = size(G, 1).

TOL — Tolerance used in determining linear dependence. (Input)
For RLEQU, TOL = 100.0 * AMACH(4) is a common choice. See the documentation for IMSL routines
AMACH in Reference Material.
Default: TOL = 1.e-5 for single precision and 2.d-14 for double precision.

LDB — Leading dimension B exactly as specified in the dimension statement in the calling program.
(Input)
Default: L.DB = size (B,1).

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

IRANKR — Rank of matrix R. (Output, if INVOKE = 0 or 3)

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDSCPE = size (SCPE,1).

IRANKH — Rank of matrix H. (Output)
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FORTRAN 90 Interface
Generic: CALL RLEQU (H, B, R, D, DFE, SCPE[, ...])
Specific: The specific interface names are S_RLEQU and D_RLEQU.

FORTRAN 77 Interface

Single: CALL RLEQU (INVOKE, NH, NCOEF, H, LDH, IG, NDEP, G, LDG, TOL, B, DB, R, DR, D,
IRANKR, DFE, SCPE, LDSCPE, IRANKH)
Double: The double precision name is DRLEQU.
Description

Routine RLEQU requires the output from routine RGIVN after RGIVN has been invoked with IDO =1 and
IDO = 2 and prior to IDO = 3 with NROW = 0. Similarly, RLEQU can use results from IMSL routine RGLM.

The routine RLEQU is designed so that you can partition a large number of restrictions, as might arise in clas-
sification models, into several groups of restrictions (each requiring less space) and make multiple calls to
RLEQU (with INVOKE =1, 2, 2, ..., 3). Alternatively, one invocation of RLEQU (with INVOKE = 0) can be made
with all the restrictions contained in H and G.

After the wrap-up computations are performed by RLEQU, routines RSTAT and RCASE can be used to com-
pute and print summary statistics and case statistics related to the fitted regression.

Routine RGIVN (or RGLM) together with routine RLEQU compute estimates of the regression coefficients in a
multivariate general linear model Y = X B + E subject to H B = G. Here, Y is the n X g matrix of responses, X is
the n X p matrix of regressors, B is the p X g matrix of regression coefficients, and E is the n X g matrix of
errors whose g-dimensional rows are identically and independently distributed multivariate normal with
mean vector 0 and variance-covariance matrix 2. The restriction is specified by the h X p matrix H and the

h X g matrix G.

Previously, algorithms for solving the restricted least-squares problem were based on solving the following
equations (Rao, 1973, page 232):

A
X'xB+H™A=XxTYy
A
HB=G
Routine RLEQU is based on an orthogonal reduction of X to upper triangular form. Fast Givens transforma-
tions with modifications described by Stirling (1981) for incorporating restrictions are used. This method has
two main advantages: (1) the loss of accuracy resulting from forming X’ X and X" Y is avoided, and (2)

restrictions can be conveniently added so as to take advantage of the previous computations performed.

The method conceptually treats restrictions as observations with zero error variance. Fast Givens transforma-
tions as described by Golub and Van Loan (1983, pages 156-162) are used. The modification to the matrix R
from the unrestricted fit to form a modified

R

for the restricted fit is as follows:
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1. If the leading nonzero element of the first restriction is small (as determined by TOL times a computed
scale factor), the element is set to zero.

2. Letibe the index of the leading nonzero element in the modified first restriction. Replace row i of R by
the restriction. Flag the i-th row as a restriction. Use the restriction to reduce the first nonzero element
of the row that was removed from R to zero. Incorporate the row that has been reduced by the restric-
tion into the remaining rows of R as if it were new data.

3. Add additional restrictions into R by using Gaussian elimination, with the rows in R corresponding to
restrictions, to reduce the restriction to a form so that it can replace a row of R corresponding to data
and preserve the upper triangular structure of R. While performing the Gaussian elimination, set small
nonzero elements (as determined by TOL times a computed scale factor) of the reduced restriction to
zero, so that errors from inexact computer arithmetic are not incorporated as a new restriction. Flag the
row as a restriction. Use the restriction to reduce the first nonzero element of the row that was
removed from R to zero. Incorporate the row that has been reduced by the restriction into the remain-
ing rows of R as if it were new data.

4. After all the data and restrictions are incorporated, the i-th row of R (where i ranges over each row of R
corresponding to a linearly independent constraint) is used to zero out elements of R in the i-th col-
umn of the previous rows of R that correspond to data. Although this step is not required to get a least-
squares solution, Sallas (1988) recommends this step so that the rows and columns of

R

corresponding to data form the R matrix for the reduced model that arises from expressing some
regression parameters, ;, in terms of other regression parameters, B](] > 1).

Linear dependence of the regressors in the reduced model is then checked as part of the wrap-up computa-
tions, using the rows and columns of R corresponding to the reduced model. The check is complicated
somewhat by the fact that a regressor could become zero in the reduced model, but because of the finite pre-

cision of computer arithmetic, the regressor is not exactly zero. Let d; equal the i-th diagonal element of X X,
and let

d:

1

equal the corresponding diagonal from the crossproducts matrix for the reduced model. Linear dependence
of regressors in the reduced model is declared if

\/1 ~ R} | i1

is less than or equal to TOL or if

\/< 1= Riio i )gi/d,-

is less than or equal to TOL. (The last check is designed to detect a zero regressor in the reduced model.) Here,

2
Riia..i1

is the square of the “multiple correlation” coefficient of the i-th regressor in the reduced model with the first
i — 1 regressors in the reduced model. The “multiple correlation” coefficient is computed using the regressors
in the reduced model and adjusted for the mean only if the incorporated restrictions have that effect.
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When a linear dependence is declared, R is changed so as to reflect the deletion of the i-th regressor from the
model. On completion of the wrap-up computations, the rows of R can be partitioned into three classes
according to the sign of the corresponding diagonal element:

1. A positive diagonal element means the row/column corresponds to data for regressors in the reduced
model.

2. Anegative diagonal element means the row corresponds to a linearly independent restriction imposed
on the regression parameters by H B = G.

3. A zero diagonal element means a linear dependence in the reduced model was declared. The regres-
sion coefficients in the corresponding row of

A

B

are set to zero. This represents an arbitrary restriction that is imposed to obtain a solution for the
regression coefficients. The elements of the corresponding row of R are also set to zero.

Redundant restrictions on the regression parameters are frequently specified in general linear models. Rou-
tine RLEQU permits redundant restrictions and returns the rank of H. An informational error is issued if
inconsistent restrictions are detected.

Comments

1. Workspace may be explicitly provided, if desired, by use of R2ZEQU/DR2EQ. The reference is:

CALL R2EQU (INVOKE, NH, NCOEF, H, LDH, IG, NDEP, G, LDG, TOL, B, LDB, R, LDR, D, IRANKR, DFE,
SCPE, LDSCPE, TRANKH, WK)

The additional argument is:

WK — Work vector of length NCOEF + NDEP.
2. Informational error

Type Code Description

3 1 The restrictions are inconsistent.

3. The results of routine RGLM can be used as input to RLEQU in place of the results of routine RGIVN.
Examples

Example 1

A grafted polynomial (spline function) is fit to data discussed by Fuller (1976, pages 396-398). The data set
contains the response variable y measuring the annual wheat yield (in bushels per acre) for the years 1908
through 1971. In order to fit the trend, Fuller fits a function that is constant for the first 25 years, increases at a
quadratic rate until 1961, and is linear for the last 10 years. This trend is represented by the function £(t)
where
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B, if 1<7<25

F(1) = 1B+ Byt + B2 if 25<1<54
Bs+ Pt if 54<r<64

where f = 1 for 1908.

In order to fit a smooth function to the data, we require both continuity and differentiability. This imposes
four restrictions on the coefficients given as follows:

1. By-By-25B3-25B4=0
2. By+54PBy+542By-B5-54PBs=0
3. B3+50By=0
4. B3+10884—B6=0
The example program first calls routine RGIVN with IDO = 1, which specifies that initialization and updating

for the data are performed and wrap-up computations are not performed. This intermediate output from
RGIVN along with the restrictions is the input to RLEQU .

USE IMSL_LIBRARIES

IMPLICIT NONE

INTEGER IDEP, LDB, LDG, LDH, LDR, LDSCPE, LDX, NCOEF, NH, &
NOBS, NVAR, J

PARAMETER (IDEP=1, LDG=1, NCOEF=6, NH=4, NOBS=64, NVAR=7, &
LDB=NCOEF, LDH=NH, LDR=NCOEF, LDSCPE=IDEP, LDX=NOBS)

INTEGER I, IDO, IG, INDDEP(IDEP), INDIND(NCOEF), INTCEP, &
IRANK, IRANKH, IRANKR, ICEN, NOUT, NRMISS
REAL B(LDB, IDEP), D(NCOEF), DFE, G(LDG,IDEP), &

H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,IDEP), &
X (LDX,NVAR) , XMAX(NCOEF), XMIN (NCOEF)
CHARACTER*4 RLABEL (1), CLABEL(1)

DATA INDIND/1, 2, 3, 4, 5, 6/, INDDEP/7/
DATA X/384*0.0, 14.3, 15.5, 13.7, 12.4, 15.1, 14.4, 16.1, 16.7, &
11.9, 13.2, 14.8, 12.9, 13.5, 12.7, 13.8, 13.3, 16.0, 12.8, &
4.7, 14.7, 15.4, 13.0, 14.2, 16.3, 13.1, 11.2, 12.1, 12.2, &
12.8, 13.6, 13.3, 14.1, 15.3, 16.8, 19.5, 16.4, 17.7, 17.0, &
17.2, 18.2, 17.9, 14.5, 16.5, 16.0, 18.4, 17.3, 18.1, 19.8, &
20.2, 21.8, 27.5, 21.6, 26.1, 23.9, 25.0, 25.2, 25.8, 26.5, &
26.3, 25.9, 28.4, 30.6, 31.0, 33.9/

DATA (H(1,J),J=1,NCCEF)/1, -1, -25, -625, 0, 0/
DATA (H(2,J),J=1,NCCEF)/0, 1, 54, 2916, -1, -54/
DATA (H(3,J),J=1,NCOEF)/0, O, 1, 50, 0, 0/

DATA (H(4,J),J=1,NCOEF)/0, O, 1, 108, 0, -1/

DATA RLABEL/'NONE'/,CLABEL/'NONE'/

DO 10 1I=1, NOBS
IF (I .LE. 25) THEN
! Constant function.
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X(I,1) =1.0
ELSE IF (I.GT.25 .AND. I.LE.54) THEN
! Quadratic function.

X(I,2) = 1.0
X(I,3) =1I
X(I,4) = I**2
ELSE IF (I .GT. 54) THEN
! Linear function.
X(I,5) = 1.0
X(I,6) =1
END IF
10 CONTINUE
IDO =1
INTCEP = 0
ICEN = 0

CALL RGIVN (X, NCOEF, INDIND, IDEP, INDDEP, B, IDO=IDO, &
INTCEP=INTCEP, ICEN=ICEN, R=R, D=D, DFE=DFE, SCPE=SCPE)

CALL RLEQU (H, B, r, d, DFE, SCPE, irankr=irankr, Irankh=irankh)

CALL UMACH (2, NOUT)

WRITE (NOUT,*) 'IRANKR = ', IRANKR, ' TRANKH = ', IRANKH

WRITE (NOUT,*) 'DFE = ', DFE, ' SCPE(1,1) = ', SCPE(1,1)

CALL WRRRL ('%/B', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT='(2W10.4)")

CALL WRRRL ('%$/R', R, RLABEL, CLABEL, ITRING=1, FMT='(2w1l0.4)")

END
Output
TIRANKR = 6 IRANKH = 4
DFE = 62.0000 SCPE(1,1) = 172.559
B
13.99 21.58 -0.6068 0.01214 -13.81 0.7039
R
-1 1 25 625 0. 0.0
-1 -54 -2916 1. 54.0
-1 -50 0. 0.0
-58 0. 1.0
8. 359.4
59.4
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Figure 2.5 — Annual U.S. Wheat Yield and a Grafted Polynomial Fit

Example 2
A fit to unbalanced data for a two-way classification model is computed. The model is

yijk:U+°(i+ Bj+yij+€ijk i=1,2;j=1,2;k=1,2, ...,7’11']'

where the «;’s and B;’s are the row and column effects, respectively, and y;/s are the interaction effects. The
responses Y are given in the cells of the following 2 X 2 table:

17,14, 11 13,12
12,14, 15, 14,12 13,14

The following restrictions can be imposed on the regression parameters in order to compute a cell-means fit
to the responses:

1. 50;+70,=0
8B +4B,=0
301 +50+3Y11+5Y1=0
201 +2 0 +2Y10+2Y0n=0
3B1+2Br+3y;1+2Y2=0
5B1+2By+5Y12t2Ypn=0

S L
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The example program first calls IMSL routine RGLM with IDO = 1, which specifies that initialization and
updating for the data are performed and wrap-up computations are not performed. This intermediate output
from RGLM along with the restrictions is the input to RLEQU.

A cell-means fit to the data could also be obtained without using RLEQU and using IDO = 0 in the call to RGLM
in this example. Although the fitted y;; would be the same, the coefficient estimates and their interpretations

would be different.

USE IMSL_LIBRARIES

IMPLICIT NONE

INTEGER IDEP, INTCEP, LDB, LDG, LDH, LDR, LDSCPE, LDX, MAXCL, &
NCLVAR, NCOEF, NEF, NH, NOBS, NVAR, J

PARAMETER (IDEP=1, INTCEP=1, LDG=1, LDH=6, MAXCL=4, NCLVAR=2, &
NCOEF=9, NEF=3, NH=6, NOBS=12, NVAR=3, LDB=NCOEF, &
LDR=NCOEF, LDSCPE=IDEP, LDX=NOBS)

INTEGER IDO, INDCL (NCLVAR), INDDEP(1l), INDEF (4),&
IRANK, IRANKH, IRANKR, IRBEF(NEF+1), ICEN, &
NCLVAL (NCLVAR) , NOUT, NRMISS, NVEF (NEF)

REAL B(LDB, IDEP), CLVAL(MAXCL), D(NCOEF), DFE, &
G (LDG, IDEP), H(LDH,NCOEF), R(LDR,NCOEF), &
SCPE (LDSCPE, IDEP) , X (LDX,NVAR), XMAX(NCOEF), &
XMIN (NCOEF)

CHARACTER CLABEL(10)*7, RLABEL (1) *4

DATA INDCL/1, 2/, NVEF/1, 1, 2/, INDEF/1l, 2, 1, 2/, INDDEP/3/

DATA CLABEL/' ', 'MU', 'ALPHAl', 'ALPHA2', 'BETAl', 'BETA2', &
'GAMMAll', 'GAMMAl2', 'GAMMA21', 'GAMMA22'/

DATA (X(1,J),J=1,NVAR) /1, 1, 17/

DATA (X(2,J),J=1,NVAR) /1, 1, 14/

DATA (X(3,J),J=1,NVAR) /1, 1, 11/

DATA (X(4,J),J=1,NVAR) /1, 2, 13/

DATA (X(5,J),Jd=1,NVAR) /1, 2, 12/

DATA (X(6,J),J=1,NVAR) /2, 1, 12/

DATA (X(7,J),J=1,NVAR) /2, 1, 14/

DATA (X(8,J),J=1,NVAR) /2, 1, 15/

DATA (X(9,J),J=1,NVAR) /2, 1, 14/

DATA (X(10,J),Jd=1,NVAR) /2, 1, 12/

DATA (X(11,J),J=1,NVAR) /2, 2, 13/

DATA (X(12,J),J=1,NVAR) /2, 2, 14/

DATA (H(1,J),J=1,NCCEF) /0, 5, 7, 0, 0, O, O, O, 0O/

DATA (H(2,J),J=1,NCCEF) /0, O, O, 8, 4, 0, O, 0, 0/

DATA (H(3,J),J=1,NCCEF) /0, 3, 5, 0, 0, 3, 0, 5, 0/

DATA (H(4,J),Jd=1,NCOEF) /0, 2, 2, 0, 0, O, 2, 0, 2/

DATA (H(5,J),J=1,NCOEF) /0, O, O, 3, 2, 3, 2, 0, 0/

DATA (H(6,J),J=1,NCOEF) /0, O, O, 5, 2, 0, 0, 5, 2/
1

IDO =1

ICEN =0

CALL RGLM (IDO=IDO, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
ICEN=ICEN, R=R, D=D, DFE=DFE, SCPE=SCPE)

CALL RLEQU (H, B, r, d, DFE, SCPE, irankr=irankr, &
irankh=irankh)
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CALL UMACH

(2, NOUT)

WRITE (NOUT,*) 'IRANKR = ', IRANKR, ' IRANKH = ', IRANKH
WRITE (NOUT,*) 'DFE = ', DFE, ' SCPE(1l,1) = ', SCPE(1l,1)
RLABEL (1) = 'NONE'
CALL WRRRL ('B', B, RLABEL, CLABEL, 1, NCOEF, 1, FMT='(F7.2)"')
CALL WRRRN ('R', R, ITRING=1)
END
Output
IRANKR = 9 IRANKH = 5
DFE = 8.00000 SCPE(1,1) = 26.2000
B
MU ALPHAL ALPHA2 BETAL BETA2 GAMMAll GAMMAl2 GAMMA21
13.42 -0.02 0.01 0.21 -0.42 0.39 -0.48 -0.24
GAMMAZ22
0.49
R
1 2 3 4 5 6 7 8 9
1 3.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 -5.00 -7.00 0.00 0.00 0.00 0.00 0.00 0.00
3 -0.80 0.00 0.00 -3.00 0.00 -5.00 0.00
4 -8.00 -4.00 0.00 0.00 0.00 0.00
5 -0.50 -3.00 -2.00 0.00 0.00
6 -3.00 -2.00 -5.00 -2.00
7 10.41 3.20 11.37
8 24.56 9.65
9 2.45
= R{nggmq\{e: RLEQU Chapter 2: Regression 165



RSTAT

A
Computes statistics related to a regression fit given the coefficient estimates B and the R matrix.

Required Arguments

IRBEF — Index vector of length [IEF| + 1. (Input, if IEF is positive.)
Fori=1,2, ..., |IEF|, element numbers IRBEF(i), IRBEF(i) + 1, ..., IRBEF(i + 1) - 1, of B correspond
to the i-th effect.

A
B — Vector of length NCOEF containing a least-squares solution £ for the regression coefficients. (Input)

Here, if IEF > 0, then NCOEF = IRBEF(IEF + 1) - 1; and if IEF < 0, then NCOEF = INTCEP - IEF. If
INTCEP = 1, then B(1) must be the estimated intercept.

R — NCOEF by NCOEF upper triangular matrix containing the R matrix. (Input)
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors
or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding
diagonal element that is negative. The remaining rows of R must have positive diagonal elements.
Only the upper triangle of R is referenced.

DFE — Degrees of freedom for error. (Input)
SSE — Sum of squares for error. (Input)

AOV — Vector of length 15 containing statistics relating to the analysis of variance. (Output)

I AOV(I)

1 Degrees of freedom for regression

2 Degrees of freedom for error

3 Total degrees of freedom

4 Sum of squares for regression

5 Sum of squares for error

6 Total sum of squares

7 Regression mean square

8 Error mean square

9 F-statistic

10 p-value

1 R? (in percent)

12 Adjusted R? (in percent)

13 Estimated standard deviation of the model error
14 Mean of the response (dependent) variable
15 Coefficient of variation (in percent)
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If INTCEP = 1, the regression and total are corrected for the mean. If INTCEP = 0, the regression and
total are not corrected for the mean, and 20v(14) and 20V(15) are set to NaN (not a number).

SQSS — | IEF| by 4 matrix containing in columns 1 through 4 the sequential degrees of freedom, sum of
squares, F-statistic, and p-value. (Output)

Each row corresponds to an effect. If IEF = 0, SQSS is not referenced and can be a vector of length one.

COEF — NCOEF by 5 matrix containing statistics relating to the regression coefficients. (Output)
Each row corresponds to a coefficient in the model. Row INTCEP + I corresponds to the coefficient for

the I-th independent variable. If INTCEP = 1, the first row corresponds to the intercept. The statistics
in the columns are

Col. Description

1 Coefficient estimate.

2 Estimated standard error of the coefficient estimate.
3 t-statistic for the test that the coefficient is zero.

4 p-value for the two-sided ¢ test.

5

Variance inflation factors. The square of the multiple correlation coefficient for the 1-th
regressor after all others can be obtained from COEF(I, 5) by the formula

1.0 - 1.0/COEF(Z, 5). If INTCEP = 0 or INTCEP =1 and I = 1, the “multiple correlation
coefficient” is not adjusted for the mean.

COVB — NCOEF by NCOEF matrix that is the estimated variance-covariance matrix of the estimated regres-
sion coefficients when R is nonsingular and is from an unrestricted regression fit. (Output)
See Comments for an explanation of COVB when R is singular or R is from a restricted regression fit. If
R is not needed, COVB and R can share the same storage locations.

Optional Arguments

INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IEF — Effect option. (Input)
Default: IEF = 0.

The absolute value of IEF is the number of effects (sources of variation) in the model excluding the
error. The sign of IEF specifies the following options:

IEF Meaning
<0 Each effect corresponds to a single regressor (coefficient) in the model.
>0 Each effect corresponds to one or more regressors. The association between the effects

and the regressors is given by elements of IRBEF.

0 There are no effects in the model. INTCEP must equal 1.
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LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

PRINT — Printing option. (Input)
Default: PRINT = ‘N’
PRINT is a character string indicating what is to be printed. The PRINT string is composed of one char-
acter print codes to control printing. These print codes are given as follows:

PRINT(I: I) Printing that occurs
‘A’ All

N’ None

1 AQV

2 SQSS

3 COEF

y COVB

The concatenated print codes ‘a’, 'N’, 1/, ..., ‘4’ that comprise the PRINT string give the combination of
statistics to be printed. Here are a few examples.

PRINT Printing that occurs
‘a’ All

N’ None

13’ A0V and COEF

124’ AOV, SQSS, and COVB

LDSQSS — Leading dimension of SQSS exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDSQSS = size (SQSS,1).

LDCOEF — Leading dimension of COEF exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCOEF = size (COEF,1).

LDCOVB — Leading dimension of COVB exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCOVB = size (COVB,1).

FORTRAN 90 Interface

Generic: CALL RSTAT (IRBEF, B, R, DFE, SSE, A0V, SQSS, COEF, COVB [, ...1)
Specific: The specific interface names are S_RSTAT and D_RSTAT.

FORTRAN 77 Interface

Single: CALL RSTAT (INTCEP, IEF, IRBEF, B, R, LDR, DFE, SSE, PRINT, AOV, SQSS, LDSQSS,
COEF, LDCOEF, COVB, LDCOVB)
Double: The double precision name is DRSTAT.
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Description

Routine RSTAT computes summary statistics from a fitted general linear model. The model is y = Xp + €
where y is the n X 1 vector of responses, X is the nn X p matrix of regressors, B is the p X 1 vector of regression
coefficients, and € is the n X 1 vector of errors whose elements are each independently distributed with mean

0 and variance 62. Routine RGTVN or routine RGLM can be used to compute the fit of the model. Next, RSTAT
uses the results of this fit to compute summary statistics, including analysis of variance, sequential sum of
squares, t tests, and estimated variance-covariance matrix of the estimated regression coefficients.

Some generalizations of the general linear model are allowed. If the i-th element of & has variance 62/w; and
the weights w; are used in the fit of the model, RSTAT produces summary statistics from the weighted least-
squares fit. More generally, if the variance-covariance matrix of € is 62V, RSTAT can be used to produce sum-
mary statistics from the generalized least-squares fit. (Routine RGIVN can be used to perform a generalized

least-squares fit, by regressing y* on X* where y* = (T~ )Ty, X* = (T"1)TX and T satisfies T'T = V. Routines for
computing y* and X* can be found in the IMSL MATH /LIBRARY.)

If the general linear model has the restriction H B = g on the regression parameters, and this restriction is
used in the fit of the model by routine RLEQU, RSTAT produces summary statistics from this restricted least-
squares fit.

The sequential sum of squares for the i-th regression parameter is given by

A\2
(rp)
1
The regression sum of squares is given by the sum of the sequential sums of squares. If an intercept is in the
model, the regression sum of squares is adjusted for the mean, i.e.,

A\2
(r3),
is not included in the sum.

The estimate of 0 is s (stored in A0V(8)) that is computed as SSE/DFE.

AN
If R is nonsingular, the estimated variance-covariance matrix of /§ (stored in COVB) is computed by

sPRIRHT,
If R is singular, corresponding to rank (X) < p, a generalized inverse is used. For a matrix G to be a

gi(i=1,2,3, or 4) inverse of a matrix A, G must satisfy conditions j (for j < i) for the Moore-Penrose inverse

but generally must fail conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse of A
are as follows:

1. AGA=A
2. GAG=G
3. AG is symmetric
4. GA is symmetric
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In the case where R is singular, the method for obtaining COVB follows the discussion of Maindonald (1984,
pages 101-103). Let Z be the diagonal matrix with diagonal elements defined by

1 if r;#0

i 0 if ri= 0
Let G be the solution to RG = Z obtained by setting the i-th ({i : 7;; = 0}) row of G to zero. COVB is set to s>’GG.
(G is a g3 inverse of R. For any g5 inverse of R, represented by

R

the result
g3 &7
RR7
is a symmetric g, inverse of RTR = XTX. See Sallas and Lionti [1988].)

Note that COVB can only be used to get variances and covariances of estimable functions of the regression
coefficients, i.e., nonestimable functions (linear combinations of the regression coefficients not in the space
spanned by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pages 166-168) for
a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in column 2 of COEF) are com-
puted as square roots of the corresponding diagonal entries in COVB.

For the case where an intercept is in the model, put

R

equal to the matrix R with the first row and column deleted. Generally, the variance inflation factor (VIF) for

the i-th regression coefficient is computed as the product of the i-th diagonal element of R'R and the i-th
diagonal element of its computed inverse. If an intercept is in the model, the VIF for those coefficients not
corresponding to the intercept uses the diagonal elements of

R'R

(see Maindonald 1984, page 40).

The preceding discussion can be modified to include the restricted least-squares problem. The modification
is based on the work of Stirling (1981). Let the matrix D = diag(dy, dy, ..., d,) be a diagonal matrix with ele-

ments d; = 0 if the i-th row of R corresponds to restriction. In the unrestricted case, D is simply the p X p

identity matrix. The formula for COVB is s>GDG. The formula for the sequential sum of squares for the i-th
({i : r;; > O}) regression parameter is given by

2

(DR&)

Sequential sums of squares for {i : r;; < 0} are set to zero.

i
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For the restricted least-squares problem, the sequential and regression sums of squares correspond to those
from a fitted reduced model obtained by first substituting the restriction H B = g into the model. In general,
the reduced model is not unique. Care must be taken to interpret the sequential sums of squares in the con-
text of the particular reduced model indicated by the R matrix. If g = 0, any of the reduced models that could
be computed from the restrictions will produce the same regression sum of squares. However, if g # 0, differ-
ent reduced models resulting from the same restricted model can have different regressands, and hence,
different total and regression sums of squares.

Comments

When R is nonsingular and comes from an unrestricted regression fit, COVB is the estimated variance-

covariance matrix of the estimated regression coefficients, and COVB = (SSE/DFE) * (RTR)~1. Other-
wise, variances and covariances of estimable functions of the regression coefficients can be obtained
using COVB, and COVB = (SSE/DFE) * GDGT. Here, D is the diagonal matrix with diagonal elements
equal to 0 if the corresponding rows of R are restrictions and with diagonal elements equal to one oth-
erwise. Also, G is a particular generalized inverse of R. See the Description section.

Examples

Example 1

This example uses a data set discussed by Draper and Smith (1981, pages 629-630). This data set is put into
the matrix X by routine GDATA (see Chapter 19, “Ultilities”). There are four independent variables and one
dependent variable. Routine RGIVN is invoked to fit the regression model and RSTAT is invoked to compute
summary statistics.

USE RSTAT_INT
USE GDATA_INT
USE RGIVN_INT

IMPLICIT NONE
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDSQSS, &
LDX, NCOEF, NDEP, NDX, NIND
PARAMETER (INTCEP=1, LDX=13, NDEP=1, NDX=5, NIND=4, &
LDSCPE=NDEP, LDSQSS=NIND, NCOEF=INTCEP+NIND, &
LDB=NCOEF, LDCOEF=NCOEF, LDCOVB=NCOEF, LDR=NCOEF)

INTEGER IDEP, IDO, IEF, IFRQ, IIND, INDDEP(1l), INDIND(1l), &
IRANK, IRBEF (1), IWT, NCOL, NRMISS, NROW
REAL AOV(15), B(LDB,NDEP), COEF (LDCOEF,5), &

COVB (LDCOVB, 5), D(NCOEF), DFE, R(LDR,NCOEF), &
SCPE (LDSCPE, NDEP) , SQSS(LDSQSS,4), SSE, TOL, &
X (LDX,NDX) , XMAX (NCOEF), XMIN (NCOEF)

CHARACTER PRINT*5

CALL GDATA (5, X, NROW, NCOL)
IIND = -NIND
IDEP = -NDEP
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CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, &
SCPE=SCPE)
PRINT = 'A'
IEF = -NIND
SSE = SCPE(1,1)
1
CALL RSTAT (IRBEF, B(:, 1), R, DFE, SSE, AOV, SQSS, COEF, COVB, &
IEF=IEF, PRINT=PRINT)
1
END
Output
R-squared Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Model Error Mean Var. (percent)
98.238 97.356 2.446 95.42 2.563
* * * Analysis of Variance * * *
Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Regression 4 2667.9 667.0 111.479 0.0000
Residual 8 47.9 6.0
Corrected Total 12 2715.8
* * * Gequential Statistics * * *
Indep. Degrees of Sum of Prob. of
Variable Freedom Squares F-statistic Larger F
1 1 1450.1 242.368 0.0000
2 1 1207.8 201.870 0.0000
3 1 9.8 1.637 0.2366
4 1 0.2 0.041 0.8441
* * * Tnference on Coefficients * * *
Standard Prob. of Variance
Coef. Estimate Error t-statistic Larger [t] Inflation
1 62.41 70.07 0.891 0.3991 10668.5
2 1.55 0.74 2.083 0.0708 38.5
3 0.51 0.72 0.705 0.5009 254 .4
4 0.10 0.75 0.135 0.8959 46.9
5 -0.14 0.71 -0.203 0.8441 282.5
* * * Variance-Covariance Matrix for the Coefficient Estimates * * *
1 2 3 4 5
1 4909.95 -50.51 -50.60 -51.66 -49.60
2 0.55 0.51 0.55 0.51
3 0.52 0.53 0.51
4 0.57 0.52
5 0.50
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Example 2

A one-way analysis of covariance model is fitted to the turkey data discussed by Draper and Smith (1981,
pages 243-249). The response variable is turkey weight y (in pounds). Three groups of turkeys correspond-
ing to the three states where they were reared are used. The age of a turkey (in weeks) is the covariate. The
explanatory variables are age, group, and interaction. The model is

Yij =M+ Bx+ o+ B+e;  i=1,23j=1,2,..,m

where &3 = 0 and B3 = 0. Routine RGLM is used to fit the model with the option IDUMMY = 2. Then, RSTAT is

used to compute summary statistics. The fitted model gives three separate lines with slopes
0.506, 0.470, and 0.445. The F test for interaction (the last effect) suggests omitting the interaction from the
model and using a model with identical slopes for each group.

USE RSTAT_INT
USE RGLM_INT

IMPLICIT NONE
! SPECIFICATIONS FOR PARAMETERS
INTEGER IDEP, IEF, INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, &
LDSQSS, LDX, MAXB, MAXCL, NCLVAR, NCOL, NROW, J
PARAMETER (IDEP=1, IEF=3, INTCEP=1, LDX=13, MAXB=6, MAXCL=3, &
NCLVAR=1, NCOL=3, NROW=13, LDB=MAXB, LDCOEF=MAXB, &
LDCOVB=MAXB, LDR=MAXB, LDSCPE=IDEP, LDSQSS=IEF)

INTEGER IDO, IDUMMY, IFRQ, INDCL (NCLVAR), INDDEP(IDEP), &
INDEF (4), IRANK, IRBEF(IEF+1), IWT, NCLVAL(NCLVAR), &
NRMISS, NVEF (IEF)

REAL AOV(15), B(LDB,IDEP), CLVAL(MAXCL), &
COEF (LDCOEF,5), COVB(LDCOVB,MAXB), D(MAXB), DFE, &
R(LDR,MAXB), SCPE(LDSCPE,IDEP), SQSS(LDSQSS,4), SSE, &
TOL, X(LDX,NCOL), XMAX(MAXB), XMIN(MAXB)

CHARACTER PRINT*1

DATA (X(1,J),Jd=1,3)/25, 13.8, 3/
DATA (X(2,J),J=1,3)/28, 13.3, 1/
DATA (X(3,J),J=1,3)/20, 8.9, 1/

DATA (X(4,J),J=1,3)/32, 15.1, 1/
DATA (X(5,J),J=1,3)/22, 10.4, 1/
DATA (X(6,J),Jd=1,3)/29, 13.1, 2/
DATA (X(7,J),Jd=1,3)/27, 12.4, 2/
DATA (X(8,J),J=1,3)/28, 13.2, 2/
DATA (X(9,J),J=1,3)/26, 11.8, 2/
DATA (X(10,J),J=1,3)/21, 11.5, 3/
DATA (X(11,J),J=1,3)/27, 14.2, 3/
DATA (X(12,J),J=1,3)/29, 15.4, 3/
DATA (X(13,J),J=1,3)/23, 13.1, 3/

DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/1, 3, 1, 3/, INDDEP/2/
IDUMMY = 2
CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, &
B, IDUMMY=IDUMMY, IRBEF=IRBEF, R=R, DFE=DFE, SCPE=SCPE)

SSE = SCPE(1,1)
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PRINT = 'A'
CALL RSTAT

(IRBEF,

B(:,

1),

ief=ief, PRINT=PRINT)

R, DFE, SSE, AOV, SQSS, COEF, COVB, &

END
Output
R-squared Adjusted Est. Std. Dev. Coefficient of
(percent) R-squared of Model Error Mean Var. (percent)
98.208 96.929 0.3176 12.78 2.484
* * * Analysis of Variance * * *
Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Regression 5 38.71 7.742 76.744 0.0000
Residual 7 0.71 0.101
Corrected Total 12 39.42
* * * Sequential Statistics * * *
Degrees of Sum of Prob. of
Effect Freedom Squares F-statistic Larger F
1 1 26.20 259.728 0.0000
2 2 12.40 61.477 0.0000
3 2 0.11 0.520 0.6156
* * * Tnference on Coefficients * * *
Standard Prob. of Variance
Coef. Estimate Error t-statistic Larger |t| Inflation
1 2.475 1.264 1.959 0.0910 205.7
2 0.445 0.050 8.861 0.0000 3.8
3 -3.454 1.531 -2.257 0.0586 64.3
4 -2.775 4.109 -0.675 0.5211 463.4
5 0.061 0.060 1.013 0.3447 68.1
6 0.025 0.151 0.166 0.8729 472.3
* * * Variance-Covariance Matrix for the Coefficient Estimates * * *
1 2 3 4 5
1 1.5965 -0.0631 -1.5965 -1.5965 0.0631
2 0.0025 0.0631 0.0631 -0.0025
3 2.3425 1.5965 -0.0913
4 16.8801 -0.0631
5 0.0036
6
1 0.0631
2 -0.0025
3 -0.0631
4 -0.6179
5 0.0025
6 0.0227
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Example 3

A two-way analysis-of-variance model is fitted to balanced data discussed by Snedecor and Cochran (1967,
Table 12.5.1, page 347). The responses are the weight gains (in grams) of rats fed diets varying in two compo-
nents—level of protein and source of protein. The model is

yijk:U""Xi"‘Bj +Yij+sijk i:1,2;j:1,2,3;k:1,2,...,10

where

3
7i; =0 for j=1,2,3; and Zy,.jzo fori=1,2
J=1

iai =0: % = 0;

3
i=1 =1

2
=1

7

Routine RGLM is used to fit the model with the IDUMMY = 0 option. Then, RSTAT is used to compute summary
statistics.

USE RSTAT_INT
USE RGLM_INT

IMPLICIT NONE

INTEGER IDEP, IEF, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDSQSS, &
LDX, LINDEF, MAXB, MAXCL, NCLVAR, NCOL, NEF, NROW

PARAMETER (IDEP=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2, &
NCOL=3, NEF=3, NROW=60, IEF=NEF, LDB=MAXB, &
LDCOEF=MAXB, LDCOVB=MAXB, LDR=MAXB, LDSCPE=IDEP, &
LDSQSS=NEF, LDX=NROW)

INTEGER IDO, IDUMMY, IFRQ, INDCL (NCLVAR), INDDEP (IDEP),&
INDEF (LINDEF), INTCEP, IRANK, IRBEF (NEF+1), IWT, &
NCLVAL (NCLVAR) , NRMISS, NVEF (NEF)

REAL AOV(15), B(LDB,IDEP), CLVAL(MAXCL), &
COEF (LDCOEF, 5), COVB(LDCOVB,MAXB), D(MAXB), DFE, &
R(LDR,MAXB), SCPE(LDSCPE,IDEP), SQOSS(LDSQSS,4), SSE, &
TOL, X(LDX,NCOL), XMAX (MAXB), XMIN (MAXB)

CHARACTER PRINT*1

DATA X/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, &
117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, &
77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0, &
108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0, &
51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0, &
98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0, &
81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0, &
10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/

DATA INDCL/2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, INDDEP/1/

IDUMMY = 0
CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
IDUMMY=IDUMMY, IRBEF=IRBEF, R=R, DFE=DFE, SCPE=SCPE)

SSE = SCPE(1,1)
PRINT = 'A'
CALL RSTAT (IRBEF, B(:,1), R, DFE, SSE, AOV, SQSS, COEF, &
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COVB,

END

Output

R-squared

(percent) R-squared
28.477 21.854

Source

Regression

Residual

Reduced Model Total

Adjusted Est.

IEF=IEF,

DF

5
54
59

Std. Dev.
of Model Error
14.65

Sum of
Square
4612.
11586.
16198.

PRINT=PRINT)

8

s
9
0
9

* * * Sequential Statistics * * *
Sum of

Degrees of

Effect Freedom
1 1

2 2

3 2

3

1

Squares

168.3

266.5

178.1

14
0
2

F-statistic

.767
.621
. 746

Mean
7.87

Coef
Var.

* * * Analysis of Variance * * *

Mean
Square

922.6

214.6

Prob.

of

Larger F

0.
0.
0.

0003
5411
0732

* * * Inference on Coefficients * * *
Prob. o
Larger |t

Estimate
87.87
7.27
-7.27
1.73
-2.97
1.23
3.13
-6.27
3.13
-3.13
6.27
-3.13

Coef.

00 J o Ul WN R

B e
N R O

Standard

Error

N NDDNDNDDNDNDNDNDNDE -

.891
.891
.891
.674
.674
.674
.674
.674
.674
.674
.674
.674

t-statistic
46.
3.
-3.
0.
-1.
0.
1.
-2.
1.
-1.
2.
-1.

47
84
84
65
11
46
17
34
17
17
34
17

0.
.0003
.0003
.5196
L2722
.6465
.2465
.0228
.2465
.2465
.0228
.2465

O OO O OO oo o oo

0000

ficient of
(percent)
16.67

Prob. of
Overall F Larger F
4.300 0.0023

f Variance
Inflation
1.000

NaN

1.000

NaN

1.333
1.333

NaN

NaN

NaN

NaN

1.333
1.333

* * * Variance-Covariance Matrix for the Coefficient Estimates * * *

1 2 3 4 5
1 3.57593 0.00000 0.00000 0.00000 0.00000
2 3.57593 -3.57593 0.00000 0.00000
3 3.57593 0.00000 0.00000
4 7.15185 -3.57592
5 7.15185

6 7 8 9 10
1 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000
4 -3.57593 0.00000 0.00000 0.00000 0.00000
5 -3.57593 0.00000 0.00000 0.00000 0.00000
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6 7.15185
7
8
9
10

11
1 0.00000
2 0.00000
3 0.00000
4 0.00000
5 0.00000
6 0.00000
7 3.57592
8 -7.15185
9 3.57593
10 -3.57592
11 7.15185
12

[ |
N W W JdWwWwwoooo oo

.00000
.15185

12

.00000
.00000
.00000
.00000
.00000
.00000
.57593
.57593
.15185
.57593
.57593
.15185

0.00000
-3.57592
7.15185

.00000
-3.
-3.
.15185

57593
57593

.00000
.15185
.57592
.57593
.15185

<N W w J o
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RCOVB

Computes the estimated variance-covariance matrix of the estimated regression coefficients given the R
matrix.

Required Arguments
R — NCOEF by NCOEF upper triangular matrix containing the R matrix. (Input)
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors

or based on a Cholesky factorization R'R of the matrix of sums of squares and crossproducts of the
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding
diagonal element that is negative. The remaining rows of R must have positive diagonal elements.
Only the upper triangle of R is referenced.

$2 — s?, the estimated variance of the error in the regression model. (Input)
s? is the error mean square from the regression fit.

COVB — NCOEF by NCOEF matrix that is the estimated variance-covariance matrix of the estimated regres-
sion coefficients when R is nonsingular and is from an unrestricted regression fit. (Output)
See Comments for an explanation of COVB when R is singular or R is from a restricted regression fit. If
R is not needed, COVB and R can share the same storage locations.

Optional Arguments

NCOEF — Number of regression coefficients in the model. (Input)
Default: NCOEF = size (R,1).

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

LDCOVB — Leading dimension of COVB exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCOVB = size (COVB,1).

FORTRAN 90 Interface

Generic: CALL RCOVB (R, S2,COVB [, ...])
Specific: The specific interface names are S_RCOVB and D_RCOVB.

FORTRAN 77 Interface

Single: CALL RCOVB (NCOEF, R, LDR, S2, COVB, LDCOVB)
Double: The double precision name is DRCOVB.
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Description

Routine RCOVB computes an estimated variance-covariance matrix of estimated regression parameters from
the R matrix in several models. In the simplest situation, the model is a general linear model given by

y =X B + € where y is the n X 1 vector of responses, X is the n X p matrix of regressors, B is the p X 1 vector of
regression coefficients, and ¢ is the n X 1 vector of errors whose elements are each independently distributed

with mean 0 and variance 02. Routine RGTVN can be used to get the fit of the model and the R matrix.

If the i-th element of € has variance 02/w; and the weights w; are used in the fit of the model, RCOVB produces
the estimated variance-covariance matrix from the R matrix in the weighted least squares fit. More generally,

if the variance-covariance matrix of € is G°V, RCOVB can be used to produce the estimated variance-covari-
ance matrix from the generalized least-squares fit. (Routine RGIVN can be used to perform a generalized

least-squares fit, by regressing y* on X* where y* = (T~ YTy, X* = (T"HTX and T satisfies T'T = V.)
If the general linear model has the restriction H = ¢ on the regression parameters and this restriction is used

in the fit of the model by routine RLEQU, RCOVB produces the estimated variance-covariance from the R
matrix in the restricted least squares fit.

Routine RCOVB computes an estimated variance-covariance matrix for the estimated regression coefficients,

A

B

in a fitted multivariate general linear model. The model is Y = XB + E where Y is the n X g matrix of
responses, X is the nn X p matrix of regressors, B is the p X g matrix of regression coefficients, and E is the

n X q matrix of errors whose rows are each independently distributed as a g-dimensional multivariate nor-
mal each with mean vector 0 and variance-covariance matrix 2. Let

B (Bobs i)

The estimated covariance matrix

A A -1
_ T
C0v<,6’l.,ﬁj> =5 (XTx)
Here, Sjj (input in S2) is the estimate of the ij-th element of 2.

If a nonlinear regression model is fit using routine RNLIN, RCOVB produces the asymptotic estimated vari-
ance-covariance matrix from the R matrix in that fit.

If R is singular, corresponding to rank(R) < p, a generalized inverse is used to compute COVB. For a matrix G
tobeagi(i=1,2,3, or 4) inverse of a matrix A, G must satisfy conditions j(for j < 7) for the Moore-Penrose

inverse but, generally, must fail conditions k (for k > 7). The four conditions for G to be a Moore-Penrose
inverse of A are as follows:

1. AGA=A
2. GAG=G
3. AG is symmetric
4. GA is symmetric
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In the case that R is singular, the method for obtaining COVB follows the discussion of Maindonald (1984,
pages 101-103). Let Z be the diagonal matrix with diagonal elements defined by

(1 ifr#0
Zii 0 if”'iizo

Let G be the solution to RG = Z obtained by setting the i-th ({i : 7;; = 0}) row of G to zero. COVB is set to s>’GG.
(G is a g3 inverse of R. For any g5 inverse of R, represented by

R

the result
g3 &7
RR7
is a symmetric g, inverse of RTR = XTX. See Sallas and Lionti [1988].)

Note that COVB can only be used to get variances and covariances of estimable functions of the regression
coefficients, i.e., nonestimable functions (linear combinations of the regression coefficients not in the space
spanned by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pages 166-168) for
a discussion of estimable functions.

The preceding discussion can be modified to include the restricted least-squares problem. The modification
is based on the work of Stirling (1981). Let the matrix D = diag(dy, d, ..., dp) be a diagonal matrix with ele-

ments d;; = 0 if the i-th row of R corresponds to a restriction and 1 otherwise. In the unrestricted case, D is

simply the p X p identity matrix. The formula for COVB is s?’GDG'.

Comments

When R is nonsingular and comes from an unrestricted regression fit, COVB is the estimated variance-

covariance matrix of the estimated regression coefficients, and COVB = s?(RTR)~L. Otherwise, variances
and covariances of estimable functions of the regression coefficients can be obtained using COVB, and

COVB = s>’GDG. Here, D is the diagonal matrix with diagonal elements equal to 0 if the corresponding
rows of R are restrictions and with diagonal elements equal to one otherwise. Also, G is a particular
generalized inverse of R. See the Description section.

Examples

Example 1

This example uses a data set discussed by Draper and Smith (1981, pages 629-630). This data set is put into
the matrix X by routine GDATA (see Chapter 19, “Ultilities”). There are 4 independent variables and 1 depen-
dent variable. Routine RGIVN is invoked to fit the regression model, and RCOVB is invoked to compute
summary statistics.

USE RCOVB_INT
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USE GDATA_INT
USE RGIVN_INT
USE WRRRL_INT

IMPLICIT NONE
INTEGER INTCEP, LDB, LDCOEF, LDCOVB, LDR, LDSCPE, LDX, NCOEF,

NDEP, NDX, NIND

PARAMETER (INTCEP=1, LDX=13, NDEP=1, NDX=5, NIND=4, &

INTEGER IDEP, IDO, IFRQ, IIND, INDDEP(1l), INDIND(1l), IRANK, &

REAL

LDSCPE=NDEP, NCOEF=INTCEP+NIND, LDB=NCOEF, &
LDCOEF=NCOEF, LDCOVB=NCOEF, LDR=NCOEF)

ICEN, IWT, NCOL, NRMISS, NROW
B(LDB,NDEP), COVB(LDCOVB,5), DFE, R(LDR,NCOEF), &
S2, SCPE(LDSCPE,NDEP), X (LDX,NDX)

CHARACTER CLABEL(6)*10, RLABEL(5)*10

DATA
DATA
!

CALL

IIND

IDEP

CALL

s2 =

!
CALL
CALL
!

END
Output
Intercept
X1
X2
X3
x4
Example 2

In this example, routine RNLIN is first invoked to fit the following nonlinear regression model discussed by

RLABEL/'Intercept', 'X1', 'X2', 'X3', 'X4'/

CLABEL/' ', 'Intercept', 'X1l', 'X2', 'X3', 'X4'/

GDATA (5, X, NROW, NCOL)

= -NIND

= -NDEP

RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, &
SCPE=SCPE)

SCPE(1,1) /DFE

RCOVB (R, S2, COVB)
WRRRL ('COVB', COVB, RLABEL, CLABEL, FMT='(2W10.4)")

COVB
Intercept X1 X2 X3 X4
4910.0 -50.51 -50.60 -51.66 -49.60
-50.5 0.55 0.51 0.55 0.51
-50.6 0.51 0.52 0.53 0.51
-51.7 0.55 0.53 0.57 0.52
-49.6 0.51 0.51 0.52 0.50

Neter, Wasserman, and Kutner (1983, pages 475-478):

&
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Then, RCOVB is used to compute the estimated asymptotic variance-covariance matrix of the estimated non-

0xx; :
}G ::6916 '+'8ﬂ = 19 27 cee s 15

linear regression parameters. Finally, the diagonal elements of the output matrix from RCOVB are used
together with routine TIN (see Chapter 17, "Probability Distribution Functions and Inverses”) to compute 95%
confidence intervals on the regression parameters.

USE IMSL_LIBRARIES

IMPLICIT
INTEGER
PARAMETER

INTEGER
REAL
INTRINSIC
EXTERNAL

DATA THETA/60.0,

CALL UMACH

IDERIV = 1
CALL RNLIN

CALL RCOVB

ISETNG=2

CALL WROPT
CALL WRRRN

NONE
LDR, NOBS, NPARM
(NOBS=15, NPARM=2, LDR=NPARM)
I, IDERIV, IRANK, ISETNG, NOUT
A, DFE, R(LDR,NPARM), SQRT, SSE, THETA (NPARM)
SQORT
EXAMPL
-0.03/

(2, NOUT)

(EXAMPL, THETA, IDERIV=IDERIV, R=R, DFE=DFE, SSE=SSE)
(R, SSE/DFE, R)
Print

(-6, ISETNG, 0)
('Estimated Asymptotic Variance-Covariance Matrix',k &
R)
Compute and print 95 percent
confidence intervals.

WRITE (NOUT, *)
WRITE (NOUT,*) ' 95% Confidence Intervals '
WRITE (NOUT,*) ' Estimate Lower Limit Upper Limit'
DO 10 I=1, NPARM
A = TIN(0.975,DFE) *SQRT(R(I,I))
WRITE (NOUT, ' (1X, F10.3, 2F13.3)') THETA(I), THETA(I) - A, &
THETA(I) + A
10 CONTINUE
END
!
SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, &
IEND)
INTEGER NPARM, IOPT, IOBS, IEND
REAL THETA (NPARM) , FRQ, WT, E, DE (NPARM)
1
INTEGER NOBS
PARAMETER (NOBS=15)
1
REAL EXP, XDATA (NOBS), YDATA (NOBS)
INTRINSIC EXP
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DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0, &
13.0, 8.0, 11.0, 8.0, 4.0, 6.0/

DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, &
38.0, 45.0, 52.0, 53.0, 60.0, 65.0/

IF (IOBS .LE. NOBS) THEN

WT = 1.0EO0
FRQ = 1.0EO
IEND = 0
IF (IOPT .EQ. 0) THEN
E = YDATA(IOBS) - THETA(1l)*EXP(THETA (2) *XDATA (IOBS))
ELSE
DE(1) = -EXP(THETA(2) *XDATA (IOBS))
DE(2) = -THETA(1l)*XDATA(IOBS) *EXP (THETA (2) *XDATA (IOBS))
END IF
ELSE
IEND = 1
END IF
RETURN
END

Output

Estimated Asymptotic Variance-Covariance Matrix
1 2

1 2.16701E+00 -1.78121E-03

2 -1.78121E-03 2.92786E-06

95% Confidence Intervals
Estimate Lower Limit Upper Limit
58.603 55.423 61.784
-0.040 -0.043 -0.036
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CESTI

HIGH

1 (E

more. ..

Constructs an equivalent completely testable multivariate general linear hypothesis H BU = G from a par-
tially testable hypothesis H,BU = G,,.

Required Arguments

HP — NHP by NCOEF matrix H), with each row corresponding to a row in the hypothesis and containing
the constants that specify a linear combination of the regression coefficients. (Input)

NDEP — Number of dependent (response) variables. (Input)

NU — U matrix option. (Input)
For positive NU, NU is the number of linear combinations of the dependent variables to be considered.
If NU = 0, the hypothesis is HPB = Gp, and U is automatically taken to be the identity. NU must be less
than or equal to NDEP .

GP — Matrix G, containing the null hypothesis values. (Input)
If NU = 0, then GP is NHP by NDEP; otherwise, GP is NHP by NU.

R — NCOEF by NCOEF upper triangular matrix containing the R matrix. (Input)
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors

or based on a Cholesky factorization R'R of the matrix of sums of squares and crossproducts of the
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding
diagonal element that is negative. The remaining rows of R must have positive diagonal elements.
Only the upper triangle of R is referenced.

IRANKP — Rank of Hp. (Output)

NH — Number of rows in the completely testable hypothesis (also, the degrees of freedom for the hypoth-
esis). (Output)
The degrees of freedom for the hypothesis (NH) classify the hypothesis H, BU = G, as nontestable
(NH = 0), partially testable (0 < NH < IRANKP), or completely testable (0 < NH = IRANKP).

H — NH by NCOEF matrix H with each row corresponding to a row in the completely testable hypothesis
and containing the constants that specify an estimable linear combination of the regression coeffi-
cients. (Output)

If HP is not needed, H and HP can occupy the same storage locations.

G — Matrix G containing the null hypothesis values for the completely testable hypothesis. (Output)
If NU = 0, then G is NH by NDEP, otherwise, G is NH by NU. If GP is not needed, G and GP can occupy the
same storage locations.
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Optional Arguments

NHP — Number of rows in the hypothesis. (Input)
Default: NHP = size (HP,1).

NCOEF — Number of regression coefficients in the model. (Input)
Default: NCOEF = size (HP,2).

LDHP — Leading dimension of HP exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDHP = size (HP,1).

LDGP — Leading dimension of GP exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDGP = size (GP,1).

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling program.
(Input)
Default: L.DH = size (H,1).

LDG — Leading dimension of G exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDG = size (G,1).

FORTRAN 90 Interface

Generic: CALL CESTI (HP, NDEP, NU, GP, R, IRANKP, NH, H,G [, ...])
Specific: The specific interface names are S_CESTI and D_CESTT.

FORTRAN 77 Interface

Single: CALL CESTI (NHP, NCOEF, HP, LDHP, NDEP, NU, GP, LDGP, R, LDR, IRANKP, NH, H, LDH, G,
LDG)
Double: The double precision name is DCESTT.
Description

Once a general linear model y = X B + € is fitted, particular hypothesis tests are frequently of interest. If the
matrix of regressors X is not full rank (as evidenced by the fact that some diagonal elements of the R matrix
output from the fit are equal to zero), methods that use the results of the fitted model to compute the hypoth-
esis sum of squares (see routine RHPSS) require one to specify in the hypothesis only linear combinations of

the regression parameters that are estimable. A linear combination of regression parameters ¢! B is estimable

means that there exists some vector a such that ¢’ = a’X, i.e., ¢! is in the space spanned by the rows of X. For

a further discussion of estimable functions, see Maindonald (1984, pages 166-168) and Searle (1971, pages
180 - 188). Routine CESTT is only useful in the case of nonfull rank regression models, i.e., when the problem
of estimability arises.
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Peixoto (1986) noted that the customary definition of testable hypothesis in the context of a general linear
hypothesis test H B = ¢ is overly restrictive. He extended the notion of a testable hypothesis (a hypothesis
composed of estimable functions of the regression parameters) to include partially testable and completely
testable hypotheses. A hypothesis H B = g is partially testable means that the intersection of the row space of H
(denoted by R(H)) and the row space of X(R(X)) is not essentially empty and is a proper subset of R(H), i.e.,
{0} C R(H) N R(X) C R(H). A hypothesis H B = g is completely testable means that {0} C R(H) < R(X). Peixoto
also demonstrated a method for converting a partially testable hypothesis to one that is completely testable
so that the usual method for obtaining the sum of squares for the hypothesis from the results of the fitted
model can be used. The method replaces H,, in the partially testable hypothesis H, B =g, by a matrix H
whose rows are a basis for the intersection of the row space of Hj, and the row space of X. A corresponding
conversion of the null hypothesis values from g, to g is also made. A sum of squares for the completely test-
able hypothesis can then be computed (see routine RHPSS). The sum of squares that is computed for the
hypothesis H B = ¢ equals the difference in the error sums of squares from two fitted models the restricted
model with the partially testable hypothesis H, B= 8p adjoined to the model as linear equality restrictions
(see routine RLEQU) and the unrestricted model.

Routines RGLM, RGIVN, RLEQU, and RCOV can be used to compute the fit of the general linear model prior to
invoking CESTI. The R matrix is required for input to CESTI. After converting a partially testable hypothesis
to a completely testable hypothesis, RHPSS can be invoked to compute the sum of squares for the hypothesis.

For the general case of the Multivariate General Linear Model Y = XB + E with possible linear equality
restrictions on the regression parameters, CESTI converts the partially testable hypothesis H, BU =G, to a
completely testable hypothesis H BU = G. For the case of the linear model with linear equality restrictions,
the definitions of estimable functions, nontestable hypotheses, partially testable hypotheses, and completely
testable hypothesis are similar to those previously given for the unrestricted model with the exception that
R(X) is replaced by R(R) where R is the upper triangular matrix output from RLEQU. The nonzero rows of R
form a basis for the rowspace of the matrix (XT, AT)T. The rows of H form an orthonormal basis for the inter-
section of two subspaces: the subspace spanned by the rows of H), and the subspace spanned by the rows of
R. The algorithm used by CESTI for computing the intersection of these two subspaces is based on an algo-
rithm for computing angles between linear subspaces due to to Bjorck and Golub (1973). (See also Golub and
Van Loan 1983, pages 429-430). The method is closely related to a canonical correlation analysis discussed by
Kennedy and Gentle (1980, 56-565). The algorithm is as follows:

1. Compute a QR factorization of
T
Hp

with column permutations so that
T _ T
H »= O R P,

Here, P; is the associated permutation matrix that is also an orthogonal matrix. Determine the rank of
H,, as the number of nonzero diagonal elements of Ry, say ;. Partition Q1 = (Qy1, Q1) so that Qy;is the
first nycolumns of Q7. Set IRANKP = n;.

2. Compute a QR factorization of the transpose of the R matrix input to CESTT with column permuta-
tions so that
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T T
R = O,R,P)

Determine the rank of R from the number of nonzero diagonal elements of R, say #,. Partition
Qz = (Q21, sz) so that Q21 is the first 1) columns of Qz.

3. Form

_ T
4= Q11Q21

4. Compute the singular values of A

(o8] > ) = 2 Umin(nl,n2>

and the left singular vectors W of the singular value decomposition of A so that

wlay = diag(al, e O-min<n1,n2>>

If 0y <1, then the dimension of the intersection of the two subspaces is s = 0. Otherwise, take the
dimension of the intersection to be s if 0, =1> 0, 1. Set NH =s.

5. Let W be the first s columns of W. Set H = (Q;W;)T.

6. Take Rq; to be a NHP by NHP matrix related to Ry as follows. If NHP < NCOEF, Ry; equals the first NHP
rows of Ry. Otherwise, Ry; contains Ry in its first NCOEF rows and zeros in the remaining rows. Com-
pute a solution Z to the linear system

T T

using routine GIRTS (IMSL MATH/LIBRARY). If this linear system is declared inconsistent, an error
message with error code equal to 2 is issued.

7. DPartition
ZT=:<ZQZ§>
so that Z; is the first n rows of Z. Set

G=wiz,
The degrees of freedom (NH) classify the hypothesis H,, BU = G, as nontestable (NH = 0), partially test-

able (0 < NH < IRANKP), or completely testable (0 < NH = IRANKP).
For further details concerning the algorithm, see Sallas and Lionti (1988).

Comments
1. Workspace may be explicitly provided, if desired, by use of C2STI/DC2STI. The reference is:

CALL C2STI (NCOEF, NHP, HP, LDHP, NDEP, NU, GP, LDGP, R, LDR, IRANKP, NH, H, LDH, G, LDG,
IWK, WK)
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The additional arguments are as follows:
IWK — Work vector of length max{NHP, NCOEF}.

WK — Work vector of length NCOEF * 11 + NCOEF? + NHP?

2

+n*r+n-+m+max{2 * m,n+r+max(n,r) - 1}.

2. Informational errors

Type Code Description
4 1 There is inadequate space to store the completely testable hypothesis.
Increase LDH or LDG so that it is greater than or equal to NH.
3 2 The hypothesis H, BU = G,, is inconsistent.
Example

A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to some data. The model is
yi]': M+&;+€ ij (ZI ]) = (1/ 1)/ (21 1)/ (2/ 2)

The model is fitted using routine RGLM. Next, the partially testable hypothesis

H.(X1=5
0 az =:3

is converted to a completely testable hypothesis using CESTI. Sum of squares associated with the hypothesis
are computed using routine RHPSS. Finally, the F statistic is computed along with the associated p-value
using routine FDF (see Chapter 17, "Probability Distribution Functions and Inverses”).

USE IMSL_LIBRARIES

IMPLICIT NONE

INTEGER LDB, LDG, LDGP, LDH, LDHP, LDR, LDSCPE, LDSCPH, &
LDX, LINDEF, MAXB, NCOL, NDEP, NEF,NHP, NROW, MAXCL, &
NCLVAR, J, NU

PARAMETER (LINDEF=1, MAXB=3, MAXCL=2, NCLVAR=1l, NCOL=2, &
NDEP=1, NEF=1, NHP=2, NROW=3, LDB=MAXB, LDG=NHP, &
LDGP=NHP, LDH=NHP, LDHP=NHP, LDR=MAXB, LDSCPE=NDEP, &
LDSCPH=NDEP, LDX=NROW)

INTEGER INDCL (NCLVAR) , INDDEP (NDEP) , INDEF (LINDEF), INTCEP, &
IRANK, IRANKP, IRBEF(NEF+1),NCOEF, NH, NOUT, NVEF (NEF)
REAL B(LDB,NDEP), DFE, DFH, F, G(LDG,NDEP), GP(LDGP,NDEP), &

H(LDH,MAXB), HP(LDHP,MAXB), PVALUE, R(LDR,MAXB), &
SCPE (LDSCPE, NDEP) , SCPH(LDSCPH, NDEP) , X (LDX, NCOL)

DATA X/1.0, 2.0, 2.0, 17.3, 24.1, 26.3/
DATA INDCL/1/, NVEF/1/, INDEF/1/, INDDEP/2/
DATA (HP(1,J),J=1,MAXB)/0.0, 1.0, 0.0/
DATA (HP(2,J),J=1,MAXB)/0.0, 0.0, 1.0/
DATA GP/5.0, 3.0/

CALL RGLM (X, INDCL, NVEF, INDEF, NDEP, INDDEP, MAXCL, B, &
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IRBEF=IRBEF, R=R, DFE=DFE, SCPE=SCPE)
NCOEF = IRBEF(NEF+1) - 1

NU = 0
CALL CESTI (HP, NDEP, NU, GP, R, IRANKP, NH, H, G, NCOEF=NCOEF)

CALL UMACH (2, NOUT)
IF (NH .EQ. 0) THEN
WRITE (NOUT,*) 'Nontestable hypothesis'
ELSE IF (NH .LT. IRANKP) THEN
WRITE (NOUT,*) 'Partially testable hypothesis'
ELSE
WRITE (NOUT,*) 'Completely testable hypothesis'
END TIF
CALL WRRRN ('H', H, NH, NCOEF, LDH)
CALL WRRRN ('G', G, NH, NDEP, LDG)
CALL RHPSS (H, B, G, R, SCPH, DFH=DFH)

F = (SCPH(1,1)/DFH)/(SCPE(1,1) /DFE)
PVALUE = 1.0 - FDF(F,DFH,DFE)
WRITE (NOUT, *)
WRITE (NOUT, *) 'Degrees of Sum of Prob. of'
WRITE (NOUT,*) ' Freedom Squares F-statistic Larger F'
WRITE (NOUT,99999) DFH, SCPH(1,1), F, PVALUE
99999 FORMAT (F8.1, 3X, 1F10.3, F11.3, 2X, F10.4)
END
Output

Partially testable hypothesis

H
1 2 3
0.0000 0.7071 -0.7071

G
1.414
Degrees of Sum of Prob. of
Freedom Squares F-statistic Larger F

1.0 65.340 27.000 0.1210
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RHPSS

HIGH

1 (E

more. ..

Computes the matrix of sums of squares and crossproducts for the multivariate general linear hypothesis
H BU = G given the coefficient estimates

B

and the R matrix.

Required Arguments

H — NH by NCOEF matrix H with each row corresponding to a row in the hypothesis and containing the
constants that specify an estimable linear combination of the regression coefficients. (Input)

B — NCOEF by NDEP matrix

A

B

containing a least-squares solution for the regression coefficients. (Input)

G — Matrix containing the null hypothesis values. (Input)
If NU = 0, then G is NH by NDEP; otherwise, G is NH by NU.

R — NCOEF by NCOEF upper triangular matrix containing the R matrix. (Input)
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors

or based on a Cholesky factorization R'R of the matrix of sums of squares and crossproducts of the
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding
diagonal element that is negative. The remaining rows of R must have positive diagonal elements.
Only the upper triangle of R is referenced.

SCPH — Matrix containing sums of squares and crossproducts attributable to the hypothesis. (Output)
If NU = 0, SCPH is a NDEP by NDEP matrix, otherwise, SCPH is a NU by NU matrix.

Optional Arguments

NH — Number of rows in the hypothesis. (Input)
Default: NH = size (H,1).

NCOEF — Number of regression coefficients in the model. (Input)
Default: NCOEF = size (H,2).
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LDH — Leading dimension of H exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDH = size (H,1).

NDEP — Number of dependent (response) variables. (Input)
Default: NDEP = size (B,2).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDB = size (B,1).

NU — U matrix option. (Input)
For positive NU, NU is the number of linear combinations of the dependent variables to be considered.
If NU = 0, the hypothesis is HB = G, i.e., U is automatically taken to be the identity. NU must be less than
or equal to NDEP.
Default: NU = 0.

U — NDEP by NU matrix U in test H BU = G. (Input, if NU is positive)
If NU = 0, U is not referenced and can be a 1 x 1 array.
Default: Uis a 1x 1 array.

LDU — Leading dimension of U exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDU = size (U, 1,).

LDG — Leading dimension of G exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDG = size (G,1).

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

DFH — Degrees of freedom for SCPH. (Output)
DFH equals the rank of H.

LDSCPH — Leading dimension of SCPH exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDSCPH = size (SCPH,1).

FORTRAN 90 Interface

Generic: CALL RHPSS (H, B,G, R, SCPH [, ...1)
Specific: The specific interface names are S_RHPSS and D_RHPSS.

FORTRAN 77 Interface

Single: CALL RHPSS (NH, NCOEF, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG, R, LDR, DFH, SCPH,
LDSCPH)
Double: The double precision name is DRHPSS.
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Description

Routine RHPSS computes the matrix of sums of squares and crossproducts for the general linear hypothesis
H BU = G for the multivariate general linear model Y = XB + E with possible linear equality restrictions

AB = Z. (See the chapter introduction for a description of the Multivariate General Linear Model.) Routines
RGLM, RGIVN, RLEQU, and RCOV can be used to compute the fit of the general linear model prior to invoking

RHPSS. The R matrix and B from any of those routines are required for input to RHPSS.

The rows of H must be linear combinations of the rows of R, i.e.,, HB = G must be completely testable. If the
hypothesis is not completely testable, Routine CESTI can be used to construct an equivalent completely test-
able hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980, page 317) that is extended
by Sallas and Lionti (1988) for multivariate nonfull rank models with possible linear equality restrictions. The
algorithm is as follows:

1. Form

W=HBU -G

2. Find C as the solution of RC = HT using routine GIRTS (IMSL MATH/LIBRARY). If the equations are
declared inconsistent within a computed tolerance, an error message with code 1 is issued that the
hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative diagonal elements from a
restricted least-squares fit using RLEQU, zero out the corresponding rows of C, i.e., form DC.

4. Decompose DC using Householder transformations and column pivoting to yield a square, upper tri-
angular matrix T with diagonal elements of nonincreasing magnitude and permutation matrix P such
that

DCPZQ[g]

where Q is an orthogonal matrix.
5. Determine the rank of T, say r. If t;; = 0, then r = 0. Otherwise, the rank of T is r if

|trr| > |l11|8 = |tr+l, r+1|
where € = 10.0 * AMACH(4). Then, zero out all rows of T below row r. Set the degrees of freedom for
the hypothesis, output in DFH, to r.

6. Find V as a solution to T TV = PTW using routine GTRTS. If the equations are inconsistent, an error
message with code 2 is issued that the hypothesis is inconsistent within a computed tolerance, i.e., the
linear system

HBU=G
AB=Z7

does not have a solution for B.

7. Form VTV, which is the required matrix of sum of squares and crossproducts output in SCPH.
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In general, the two errors with code 1 and 2 are serious user errors that require the user to correct the
hypothesis before any meaningful sums of squares from this routine can be computed. However, in
some cases, the user may know the hypothesis is consistent and completely testable, but the checks in
RHPSS are too tight. For this reason, RHPSS continues with the computations.

Routine RHPSS gives a matrix of sums of squares and crossproducts that could also be obtained from
separate fittings of the two models

Y* = XB* + E*
AB* = Z* 1)
HB*=G
and
Y* = XB* + E*
AB* = 7* @)

where Y* = YU, B* = BU, E* = EU, and Z* = ZU. The error sum of squares and crossproduct matrix for (1)
minus that for (2) is the matrix of sum of squares and crossproducts output in SCPH. Note that this
approach avoids entirely the question of testability.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2PSS/DR2PSS. The reference is:

CALL R2PSS (NCOEF, NH, H, LDH, NDEP, B, LDB, NU, U, LDU, G, LDG, R, LDR, DFH, SCPH, LDSCPH,
IWK, WK)

The additional arguments are as follows:
IWK — Work vector of length NH.

WK — Work vector of length
NH * (NDEP + NCOEF + max(NCOEF, NH) + 3) + NU * NDEP - 1.

2. Informational errors

Type Code Description

3 1 The hypothesis is not completely testable. Each row of H must be in the
space spanned by the rows of R.

3 2 The hypothesis is inconsistent. The linear system HB U = G combined with
any restrictions from a regression fit with linear equality restrictions must
have a solution for B.

A r -/ A
3. scpi =(HBU-G) (c"pC) (HBU-G)
where (CTDC) ™ is a generalized inverse of C'DC, C is a solution to RTC = H', and D is a diagonal
matrix with
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=00 if ry<0

Examples

Example 1

A two-way analysis-of-variance model is fitted to balanced data discussed by Snedecor and Cochran (1967,
Table 12.5.1, page 347). The responses are the weight gains (in grams) of rats fed diets varying in two compo-
nents-level of protein and source of protein. The model is

yijk:u+0(i+Bj+Yij+£ijk i=1,2}j=1,2,3,'k=1,2,...,10

where

2 3
Zaizo; Z,BJ:O; ZyijZOforj=1,2,3; and ZyiJZOfori=1,2

2 3
i=1 =1 i=1 =1

The model is fitted using routine RGLM. Next, the sum of squares for interaction

Vi1~ Y12 " Y21 T =0
Yin = Y13~ Yo T3 =0

is computed using RHPSS. Finally, the F statistic is computed along with the associated p-value using routine
FDF (see Chapter 17, "Probability Distribution Functions and Inverses”).

Ho:

USE RHPSS_INT
USE RGLM_INT
USE UMACH_INT
USE FDF_INT

IMPLICIT NONE
INTEGER LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDU, LDX, LINDEF, &
MAXB, NCOL, NDEP, NEF, NH, NROW, MAXCL, NCLVAR, J
PARAMETER (NDEP=1, LINDEF=4, MAXB=12, MAXCL=5, NCLVAR=2, NCOL=3, &
NEF=3, NH=2, NROW=60, LDB=MAXB, LDG=NH, LDH=NH, &
LDR=MAXB, LDSCPE=NDEP, LDSCPH=NDEP, LDX=NROW)

INTEGER  INDCL (NCLVAR), INDDEP (NDEP), INDEF (LINDEF), INTCEP, &
IRANK, IRBEF(NEF+1), NCOEF, NOUT, NVEF (NEF)

REAL B(LDB,NDEP), DFE, DFH, F, G(LDG,NDEP), H(LDH,MAXB), &
PVALUE, R(LDR,MAXB), SCPE(LDSCPE,NDEP), &
SCPH (LDSCPH, NDEP) , X (LDX, NCOL) , XMAX (MAXB), &
XMIN (MAXB)

DATA X/73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, &
117.0, 111.0, 98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, &
77.0, 86.0, 92.0, 94.0, 79.0, 96.0, 98.0, 102.0, 102.0, &
108.0, 91.0, 120.0, 105.0, 90.0, 76.0, 90.0, 64.0, 86.0, &
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51.0, 72.0, 90.0, 95.0, 78.0, 107.0, 95.0, 97.0, 80.0, &
98.0, 74.0, 74.0, 67.0, 89.0, 58.0, 49.0, 82.0, 73.0, 86.0,
81.0, 97.0, 106.0, 70.0, 61.0, 82.0, 30*1.0, 30*2.0, &
10*1.0, 10*2.0, 10*3.0, 10*1.0, 10*2.0, 10*3.0/
DATA INDCL/2, 3/, NVEF/1, 1, 2/, INDEF/2, 3, 2, 3/, INDDEP/1/
DATA (H(1,J),0=1,MAXB)/6*0.0, 1.0, -1.0, 0.0, -1.0, 1.0, 0.0/
DATA (H(2,J),0J=1,MAXB)/6*0.0, 1.0, 0.0, -1.0, -1.0, 0.0, 1.0/
DATA G/2%0.0/
|
CALL RGLM (X, INDCL, NVEF, INDEF, NDEP, INDDEP, MAXCL, B, &
IRBEF=IRBEF, R=R, DFE=DFE, SCPE=SCPE)
!
NCOEF = IRBEF (NEF+1) - 1

CALL RHPSS

(H, B, G, R, SCPH, DFH=DFH)

F = (SCPH(1,1)/DFH)/(SCPE(1,1)/DFE)
PVALUE = 1.0 - FDF(F,DFH,DFE)
CALL UMACH (2, NOUT)
WRITE (NOUT,*) 'Degrees of Sum of Prob. of'
WRITE (NOUT, *) ' Freedom Squares F-statistic Larger F'
WRITE (NOUT,99999) DFH, SCPH(1l,1), F, PVALUE
99999 FORMAT (F8.1, 3X, 1F10.3, F11.3, 2X, F10.4)
END
Output
Degrees of Sum of Prob. of
Freedom Squares F-statistic Larger F
2.0 1178.135 2.746 0.0732
Example 2

The data for the second example are taken from Maindonald (1984, pages 203-204). The data are saved in the
matrix X. A multivariate regression model containing two dependent variables and three independent vari-

&

ables is fit using routine RGIVN. The sum of squares and crossproducts matrix is computed for the third
independent variable in the model.

USE IMSL_LIBRARIES

IMPLICIT NONE
INTEGER INTCEP, LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDX, &
NCOEF, NCOL, NDEP, NH, NIND, NROW, J, LDU
PARAMETER (INTCEP=1, LDU=1, NCOL=5, NDEP=2, NH=1, NIND=3, &
NROW=9, LDG=NH, LDH=NH, LDSCPE=NDEP, LDSCPH=NDEP, &
LDX=NROW, NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)
|
INTEGER IDEP, IIND, INDDEP(1), INDIND(1),&
NOUT, NRMISS
REAL B(LDB,NDEP), D(NCOEF), DFE, DFH, G(LDG,NDEP), &
H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
SCPH (LDSCPH,NDEP) , X (LDX,NCOL)
|
DATA (X(1,J),J=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
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DATA (X(2,J),Jd=1,NCOL)/2.0, -1.0, 6.0, -5.0, 4.0/
DATA (X(3,J),Jd=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
DATA (X(8,J),J=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
DATA (X(9,J),Jd=1,NCOL)/2.0, 1.0, 4.0, 3.0, 0.0/
DATA H/3*0.0, 1.0/, G/0.0, 0.0/

1
IIND = -NIND
IDEP = -NDEP

CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R)
CALL RHPSS (H, B, G, R, SCPH, DFH=DFH)
CALL UMACH (2, NOUT)

WRITE (NOUT,*) 'DFH = ', DFH
CALL WRRRN ('SCPH', SCPH)
END
Output
DFH = 1.00000
SCPH
1 2

1 100.0 -40.0
2 -40.0 16.0
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RHPTE

HIGH

PE (E

more. ..

Performs tests for a multivariate general linear hypothesis H BU = G given the hypothesis sums of squares
and crossproducts matrix Sg; and the error sums of squares and crossproducts matrix Sg.

Required Arguments

DFE — Degrees of freedom for error matrix SCPE. (Input)
SCPE — NDEP by NDEP matrix Sg containing sums of squares and crossproducts for error. (Input)

DFH — Degrees of freedom for hypothesis matrix Sg;. (Input)

SCPH — Matrix Sy containing sums of squares and crossproducts attributable to the hypothesis. (Input)
If NU = 0, Sy is a NDEP by NDEP matrix; otherwise, Sy is a NU by NU matrix.

TEST — Vector of length 8 containing test statistics and p-values for the hypothesis
H BU = G. (Output)

Elem Description

1,5 Wilks’ lambda and p-value

2,6 Roy’s maximum root criterion and p-value
3,7 Hotelling’s trace and p-value

4,8 Pillai’s trace and p-value

Optional Arguments

NDEP — Number of dependent variables. (Input)
Default: NDEP = size (SCPE,2).

LDSCPE — Leading dimension of SCPE exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDSCPE = size (SCPE,1).

NU — U matrix option. (Input)
For positive NU, NU is the number of linear combinations of the dependent variables to be considered.
If NU = 0, the hypothesis is HB = G, i.e., U is automatically taken to be the identity.
Default: NU = 0.

U — NDEP by NU matrix used to test H BU = G. (Input, if NU is positive)
The rank of the matrix U must equal the number of columns. If NU = 0, U is not referenced and can be
al X 1array.
Default: Uis a1l X 1 array.
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LDU — Leading dimension of U exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDU = size(U, 1).

LDSCPH — Leading dimension of SCPH exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDSCPH = size (SCPH,1).

FORTRAN 90 Interface

Generic: CALL RHPTE (DFE, SCPE, DFH, SCPH, TEST [, ...])
Specific: The specific interface names are S_RHPTE and D_RHPTE.

FORTRAN 77 Interface

Single: CALL RHPTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU, DFH, SCPH, LDSCPH, TEST)
Double: The double precision name is DRHPTE.
Description

Routine RHPTE computes test statistics and p-values for the general linear hypothesis H BU = G for the multi-
variate general linear model. See the section “Multivariate General Linear Model” in the chapter
introduction.

Routines RGLM, RGIVN, RLEQU, and RCOV can be used to compute the fit of the general linear model prior to
invoking RHPTE. The error sum of squares and crossproducts matrix (SCPE) is required for input to RHPTE.

In addition, the hypothesis sum of squares and crossproducts matrix (SCPH), which can be computed using

routine RHPSS, is required for input to RHPTE.

The hypothesis sum of squares and crossproducts matrix input in SCPH is

A T T - A
su=(nBu-G)(c"pC) (HBU-G)
where Cis a solution to R'C = H and where D is a diagonal matrix with diagonal elements
“ (0 otherwise

See the section “Linear Dependence and the R Matrix” in the chapter introduction.

The error sum of squares and crossproducts matrix for the model Y = XB + E is

(v-xB(v-xB)

which is input in SCPE. The error sum of squares and crossproducts matrix for the hypothesis H BU = G com-
puted by RHPTE is

= ROQQ?WQ\{EF RHPTE Chapter 2: Regression 198



se=UT(y-xB)" (v - xB)U

Let p equal the order of the matrices Sg and Sy, i.e.,

_{nu ifNU>0
NDEP otherwise

Let g (stored in DFH) be the degrees of freedom for the hypothesis. Let v (stored in DFE) be the degrees of free-
dom for error. Routine RHTPE computes three test statistics based on eigenvalues A; (i =1, 2, ..., p) of the

generalized eigenvalue problem Spyx = ASgx. These test statistics are as follows:

Wilks’ lambda

det(Sp)
~ QetS, 5y

A is output in TEST(1). The p-value output in TEST(5) is based on an approximation discussed by Rao (1973,
page 556). The statistic

_ms—pq/2+1 11— qls

r prq Al/s

has an approximate F distribution with pq and ms - pq/2 + 1 numerator and denominator degrees of free-
dom, respectively, where

1 if p=lorg=1
- 72
N -4 .
12“12 otherwise
prrg-s

and
m=v-(p-q+1)/2
The F test is exact if min(p, q) < 2 (Kshirsagar 1972, Theorem 4, pages 299-300).
Roy’s maximum root
¢ = max/,
1

c is output in TEST(2). The p-value output in TEST(6) is based on the approximation
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v+g—s
F=—§I c

where s = max(p, q) has an approximate F distribution with s and v + g4 - s numerator and denominator
degrees of freedom, respectively. The F test is exact if s = 1, and then the p-value output in TEST(7) is exact. In
general, the value output in TEST(7) is a lower bound on the actual p-value.

Hotelling’s trace

p
U=wOﬁ”)=§5@
i=1
U is output in TEST(3). The p-value output in TEST(7) is based on the approximation of McKeon (1974) that

supersedes the approximation of Hughes and Saw (1972). McKeon's approximation is also discussed by
Seber (1984, page 39). For

_ pqg+2
A N CGDE
(v=p=3)(v-r)

the p-value output in TEST(7) is based on the result that
b ( v—p—1 )
(b -2 ) Pq

has an approximate F distribution with pq and b degrees of freedom. The test is exact if min(p, q) = 1. For
v < p + 1, the approximation is not valid, and TEST(7) is set to NaN (not a number).

1

F

These three test statistics are valid when Sg is positive definite. A necessary condition for Sg to be positive
definite is v = p. If Sg is not positive definite, a warning error message with error code 1 is issued, and the
entries in TEST corresponding to the computed test statistics and p-values are set to NaN (not a number).

Because the requirement v > p can be a serious drawback, RHTPE computes a fourth test statistic based on
eigenvalues 6;(i=1, 2, ..., p) of the generalized eigenvalue problem Syw = 8 (S + Sg)w. This test statistic

requires a less restrictive assumption—Sy; + Sg is positive definite. A necessary condition for Sg; + Sg to be
positive definite is v + g = p. If Sg is positive definite, RHPTE avoids the computation of this generalized

eigenvalue problem from scratch. In this case, the eigenvalues 0 ; are obtained from A; by

The fourth test statistic is as follows:
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Pillai’'s trace

V=te| Sp(Sy+5p)" |

0;

M

1

1

V is output in TEST(4). The p-value output in TEST(8) is based on an approximation discussed by Pillai
(1985). The statistic

2n+s+1 V
2m+s+1 s—V

F:

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator and denominator degrees of
freedom, respectively, where

s = min(p,q)
m=35(Ip—ql-1)
n= %(v—p—l)

The F test is exact if min(p, q) = 1.

Comments
1. Workspace may be explicitly provided, if desired, by use of R2PTE/DR2PTE. The reference is:
CALL R2PTE (DFE, NDEP, SCPE, LDSCPE, NU, U, LDU, DFH, SCPH, LDSCPH, TEST, WK)
The additional argument is:
WK — Work vector of length 2 * p> + 2 * p + NDEP + 2 * NU?

2. Informational errors

Type Code Description

3 1 UTSpU is singular. Only the Pillai trace statistic can be computed. Other sta-
tistics are set to NaN.

4 2 UTSpU + Sy is singular. No tests can be computed.

4 3 Iterations for eigenvalues for the generalized eigenvalue problem

Spx = NSy + UTSpU)x failed to converge. Statistics cannot be computed.

Example

The data for the example are taken from Maindonald (1984, pages 203-204). The data are stored in the matrix
X. A multivariate regression model containing two dependent variables and three independent variables is
fit using routine RGIVN. The sum of squares and crossproducts matrix is computed for the third independent
variable in the model using RHPSS. Routine RHPTE is used to test whether the third independent variable
should be included in the regression.
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USE IMSL_LIBRARIES

IMPLICIT NONE

INTEGER LDB, LDG, LDH, LDR, LDSCPE, LDSCPH, LDU, LDX, &
NCOEF, NCOL, NDEP, NH, NIND, NROW, J, INTCEP, IIND

PARAMETER (INTCEP=1, LDU=1, NCOL=5, NDEP=2, NH=1, NIND=3, &
NROW=9, LDG=NH, LDH=NH, LDSCPE=NDEP, LDSCPH=NDEP, &
LDX=NROW, NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)

INTEGER IDEP, IND, INDDEP (1), INDIND(1)

REAL B(LDB,NDEP), DFE, DFH, G(LDG,NDEP), &
H(LDH,NCOEF), R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
SCPH (LDSCPH,NDEP) , TEST(8), X(LDX,NCOL)

CHARACTER CLABEL(3)*14, RLABEL(4)*9

DATA (X(1,J),Jd=1,NCOL)/7.0, 5.0, 6.0, 7.0, 1.0/
DATA (X(2,J),J=1,NCOL) /2.0, -1.0, 6.0, -5.0, 4.0/
DATA (X(3,J),d=1,NCOL)/7.0, 3.0, 5.0, 6.0, 10.0/
DATA (X(4,J),J=1,NCOL)/-3.0, 1.0, 4.0, 5.0, 5.0/
DATA (X(5,J),J=1,NCOL)/2.0, -1.0, 0.0, 5.0, -2.0/
DATA (X(6,J),J=1,NCOL)/2.0, 1.0, 7.0, -2.0, 4.0/
DATA (X(7,J),J=1,NCOL)/-3.0, -1.0, 3.0, 0.0, -6.0/
DATA (X(8,J),Jd=1,NCOL)/2.0, 1.0, 1.0, 8.0, 2.0/
DATA (X(9,J),J=1,NCOL) /2.0, 1.0, 4.0, 3.0, 0.0/
DATA H/3*0.0, 1.0/, G/0.0, 0.0/
DATA RLABEL/'Wilks', 'Roy', 'Hotelling', 'Pillai'/
DATA CLABEL/' ', 'Test statistic', 'p-value'/

1
IIND = -NIND
IDEP = -NDEP

CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)
CALL RHPSS (H, B, G, R, SCPH, DFH=DFH)
CALL RHPTE (DFE, SCPE, DFH, SCPH, TEST)

(

CALL WRRRL (' ', TEST, RLABEL, CLABEL, 4, 2, 4, FMT= '(F14.3, F9.6)")
END
Output
Test statistic p-value
Wilks 0.003 0.000010
Roy 316.601 0.000010
Hotelling 316.601 0.000010
Pillai 0.997 0.000010
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RLOFE

Computes a lack of fit test based on exact replicates for a fitted regression model.

Required Arguments

X — NOBS by NCOL matrix containing the data. (Input)
IREP — Variable option. (Input)

IREP
<0
>0

0

INDREP — Index vector of length TREP containing the column numbers of X that are the variables used to
determine replication. (Input, if IREP is positive) If IREP is less than or equal to 0, INDREP is not ref-

Meaning

The first -IREP columns of X contain the variables used to determine exact replicates.

The IREP variables used to determine exact replicates are specified by the column
numbers in INDREP.

The exact replicates are specified in IGROUP.

erenced and can be a vector of length one.

IRSP — Column number IRSP of X contains data for the response (dependent) variable. (Input)

DFE — Degrees of freedom for error from the fitted regression. (Input)

SSE — Sum of squares for error from the fitted regression. (Input)

IGROUP — Vector of length NOBS specifying group numbers. (Output, if IREP is nonzero; input, if
IREP =0)

On output, IGROUP(I) = J means row I of X is in the J-th group of replicates (J =0, 1, 2, ..., NGROUP).
Here, J = 0 indicates the group of observations not used in the analysis because NaN (not a number)
was input for one of more of the values of the response, replication, frequency, or weight variables. On

input, IGROUP(I) = IGROUP(K), K # I, indicates that row I and row K of X are in the same group.
IGROUP(I) must equal O if row I of X has NaN as one or more of the values of the response, replica-
tion, frequency, or weight variables.

NGROUP — Number of groups in the lack of fit test. (Output)

TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the model. (Output)

Elem

1

OS]

Description

Degrees of freedom for lack of fit

Degrees of freedom for pure error

Degrees of freedom for error (TESTLF(1)+ TESTLF(2))
Sum of squares for lack of fit

Sum of squares for pure error

Sum of squares for error

Mean square for lack of fit

Mean square for pure error

=RogueWave

RLOFE

Chapter 2: Regression

203



Elem Description
9 F statistic
10 p-value

If there are no replicates in the data set, a test for lack of fit cannot be performed. In this case, elements
8,9, and 10 of TESTLF are set to NaN (not a number).

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (X,1).

NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: L.DX = size (X,1).

IFRQ — Frequency option. (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the
frequencies.
Default: IFRQ = 0.

IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the

weights.
Default: IWT = 0.

FORTRAN 90 Interface
Generic: CALL RLOFE (X, IREP, INDREP, IRSP, DFE, SSE, IGROUP, NGROUP, TESTLF [, ...])
Specific: The specific interface names are S_RLOFE and D_RLOFE.

FORTRAN 77 Interface

Single: CALL RLOFE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP, IFRQ, IWT, DFE, SSE, IGROUP,
NGROUP, TESTLF)
Double: The double precision name is DRLOFE.
Description

Routine RLOFE computes a lack of fit test based on exact replicates for a fitted regression model. The data
need not be sorted prior to invoking RLOFE. The column indices of X for determining exact replicates can be
input in INDREP. If the groups of exact replicates are known prior to invoking RLOFE, the option IREP =0
allows RLOFE to bypass the computation of the groups. This option is particularly useful for computing a
second lack of fit for a different dependent variable that uses the same columns of X for determining exact
replicates as the first test.
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If IREP is nonzero, routine SROWR (see Chapter 19, “Ultilities”) is used to compute a permutation vector that
specifies the sorted X along with the #;’s, the number of rows of X in each group. If IREP is zero, the permu-
tation vector and the 7;’s are computed from IGROUP.

Let 71; be the number of rows of X in the i-th group of replicates (i =1, 2, ..., k). Let y;; be the response for the
j-th row within the i-th group. Let w;; and f;; be the associated weight and frequency, respectively. The pure
error (within group) sum of squares is

ko i
- \2
SSPE = zzwijfij<yij - yl-.>

i=1 j=1

The associated degrees of freedom are

ki
DFPE = sz” —k

i=j j=1

The lack of fit sum of squares is SSE - SSPE and the lack of fit degrees of freedom are
DFE - DFPE.

The F statistic for the test of the null hypothesis of no lack of fit is

(SSE—SSPE) / (DFE — DFPE)
F= SSPE/DFPE

Under the hypothesis of no lack of fit, the computed F has an F distribution with numerator and denomina-
tor degrees of freedom DFE - DFPE and DFPE, respectively. The p-value for the test is computed as the
probability that a random variable with this distribution is greater than or equal to the computed F statistic.

Comments
1. Workspace may be explicitly provided, if desired, by use of R20FE/DR20FE. The reference is:

CALL R20FE (NOBS, NCOL, X, LDX, IREP, INDREP, IRSP, IFRQ, IWT, DFE, SSE, IGROUP, NGROUP,
TESTLF, IWK, WK)

The additional arguments are as follows:

IWK — Work vector. If IREP = 0, the length of IWK is 3 * NOBS; otherwise, the length of IWK is
|IREP| + m + 2.8854 * 1n(m) + 3 * NOBS + 5.

WK — Work vector. If IREP= 0, WK is not referenced and can be a vector of length 1; otherwise, WK
is of length 2 * m.
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2. Informational errors

Type Code Description

3 1 DFE is less than the degrees of freedom for pure error. The degrees of free-
dom for lack of fit is set to zero.

3 2 SSE is less than the sum of squares for pure error. The sum of squares for lack
of fit is set to zero.

4 3 An invalid weight or frequency is encountered. Weights and frequencies
must be nonnegative.

4 4 An element in X contains NaN (not a number), but the corresponding ele-
ment in IGROUP is not zero. When IREP = 0, missing values in a row of X are
indicated by setting the corresponding row of IGROUP to zero.

Examples

Example 1

This example uses data from Draper and Smith (1981, page 374), which is input in X. A multiple linear regres-
sion of column 6 of X on an intercept and columns 1, 3, and 4 has already been computed. The fit gave a
residual sum of squares SSE = 163.93 with DFE = 16 degrees of freedom. A test for lack of fit is computed
using routine RLOFE.

USE RLOFE_INT
USE UMACH_INT
USE WRIRN_INT

IMPLICIT NONE
INTEGER LDX, NCOL, NOBS, NREP, J
PARAMETER (NCOL=6, NOBS=20, NREP=3, LDX=NOBS)

INTEGER IGROUP (NOBS), INDREP(NREP), IREP, IRSP, &
NGROUP, NOUT

REAL DFE, SSE, TESTLF(10), X(LDX,NCOL)

1
DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
DATA (X(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
DATA (X(1l6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
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DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/

DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/

DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
/

DATA INDREP/1, 3, 4

IREP = NREP

IRSP = 6
DFE = 16.0
SSE = 163.93

CALL RLOFE (X, IREP, INDREP, IRSP, DFE, SSE, IGROUP, NGROUP, TESTLF)
CALL UMACH (2, NOUT)

WRITE (NOUT,*) ' NGROUP = ', NGROUP

CALL WRIRN ('IGROUP', IGROUP, 1, NOBS, 1)

WRITE (NOUT,*) ' '

WRITE (NOUT,99999) Test for Lack of '// &
'Fit!
WRITE (NOUT,99999) Sum of Mean '// &
! Prob. of'
WRITE (NOUT,99999) ' Source of Error DF Squares Square '// &
' F Larger F'
WRITE (NOUT,99999) ' Lack of Fit ', TESTLF (1), TESTLF(4), &
TESTLF(7), TESTLF(9), TESTLF(10)
WRITE (NOUT,99999) ' Expanded model ', TESTLF(2), TESTLF(5), &
TESTLF (8)
WRITE (NOUT,99999) ' Original model ', TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
END
Output
NGROUP = 6
IGROUP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6 6 6 4 5 4 5 6 2 4 4 4 6 6 6 4 1 4 4 3

Test for Lack of Fit

Sum of Mean Prob. of
Source of Error DF Squares Square F Larger F
Lack of Fit 2.0 20.5 10.25 1.001 0.393
Expanded model 14.0 143 .4 10.24
Original model 16.0 163.9

Example 2

This example uses the same data as in Example 1. Here, the option IREP = 0 is used because IGROUP is
known before invoking routine RLOFE. Routine SROWR (see Chapter 19, “Utilities”) is used to compute the
group numbers contained in IGROUP.

USE RLOFE_INT
USE SROWR_INT
USE UMACH_INT
USE WRIRN_INT
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IMPLICIT NONE
INTEGER LDX, NCOL, NKEY, NOBS, J
PARAMETER (NCOL=6, NKEY=3, NOBS=20, LDX=NOBS)

INTEGER I, IGROUP(NOBS), INDKEY (NKEY), &
INDREP (1), IPERM(NOBS), IREP, IRET, IRSP, &
K, NGROUP, NI (NOBS), NOUT, NRMISS

REAL DFE, SSE, TESTLF(10), X(LDX,NCOL)

1
DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/
DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/
DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/
DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/
DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/
DATA (X(7,J),Jd=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/
DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/
DATA (X(10,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/
DATA (X(11,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/
DATA (X(12,J),J=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/
DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/
DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/
DATA (X(15,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/
DATA (X(l1l6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/
DATA (X(17,J),J=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
DATA INDKEY/1, 3, 4/

1
IRET =1
CALL SROWR (X, INDKEY, IPERM, NGROUP, NI, IRET=IRET)
K=1

DO 20 I=1, NGROUP
DO 10 J=1, NI(I)
IGROUP (IPERM(K)) = I
K=K+ 1

10 CONTINUE

20 CONTINUE
IREP = 0
IRSP = 6
DFE = 16.0
SSE = 163.93
CALL RLOFE (X, IREP, INDREP, IRSP, DFE, SSE, IGROUP, NGROUP, TESTLF)
CALL UMACH (2, NOUT)
WRITE (NOUT, *) ' NGROUP = ', NGROUP
CALL WRIRN ('IGROUP', IGROUP, 1, NOBS, 1)
WRITE (NOUT,*) ' '
WRITE (NOUT,99999) Test for Lack of '// &

'Fit!
WRITE (NOUT,99999) ' Sum of Mean '// &
! Prob. of'

WRITE (NOUT,99999) ' Source of Error DF Squares Square '// &
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' F Larger F'

WRITE (NOUT,99999) ' Lack of Fit ', TESTLF (1), TESTLF(4), &
TESTLF(7), TESTLF(9), TESTLF(10)
WRITE (NOUT,99999) ' Expanded model ', TESTLF(2), TESTLF(5), &
TESTLF (8)
WRITE (NOUT,99999) ' Original model ', TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
END
Output
NGROUP = 6
IGROUP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6 6 6 4 5 4 5 6 2 4 4 4 6 6 6 4 1 4 4 3

Test for Lack of Fit

Sum of Mean Prob. of
Source of Error DF Squares Square F Larger F
Lack of Fit 2.0 20.5 10.25 1.001 0.393
Expanded model 14.0 143.4 10.24
Original model 16.0 163.9
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RLOFN

HIGH

1 (E

more. ..

Computes a lack of fit test based on near replicates for a fitted regression model.

Required Arguments

X — NOBS by NCOL matrix containing the data. (Input)
IIND — Independent variable option. (Input)

IIND Meaning

<0 The first -IIND columns of X contain the independent (explanatory) variables.
>0 The 1IND independent variables are specified by the column numbers in INDIND.
=0 There are no independent variables.

There are NCOEF = INTCEP + | IIND| regressors—the intercept (if INTCEP = 1) and the independent
variables.

INDIND — Index vector of length IIND containing the column numbers of X that are the independent
variables. (Input, if IIND is positive)
If TIND is nonnegative, INDIND is not referenced and can be a vector of length one.

IRSP — Column number IRSP of X contains data for the response (dependent) variable. (Input)
B — Vector of length NCOEF containing a least-squares solution

AN
for the regression coefficients. (Input)

R — NCOEF by NCOEF upper triangular matrix containing the R matrix. (Input)
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors

or based on a Cholesky factorization RTR of the matrix of sums of squares and crossproducts of the
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding
diagonal element that is negative. The remaining rows of R must have positive diagonal elements.
Only the upper triangle of R is referenced.

DFE — Degrees of freedom for error from the fitted regression. (Input)
SSE — Sum of squares for error from the fitted regression. (Input)

NGROUP — Number of groups. (Input)
A cluster analysis based on NGROUP groups is performed. A good choice for NGROUP is the number of
groups of near replicates in the data set.
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IGROUP — Vector of length NOBS specifying group numbers. (Input, if ICLUST = 0; Output, if
ICLUST > 1)
IGROUP(I) = J means row I of X is in the J-th group of near replicates (J =0, 1, 2, ..., NGROUP). Here,
J = 0 indicates the group of observations not used in the analysis because NaN (not a number) was
input for one or more of the values of the response, independent, frequency, or weight variables.

TESTLF — Vector of length 10 containing statistics relating to the test for lack of fit of the model. (Output)

Elem Description
1 Degrees of freedom for lack of fit
2 Degrees of freedom for error from the expanded model (one-way analysis of

covariance model using clusters of near replicates as the groups).

3 Degrees of freedom for error (DFE = TESTLF(1) + TESTLF(2)).
4 Sum of squares for lack of fit.

5 Sum of squares for error from the expanded model.

6 Sum of squares for error (SSE = TESTLF(4) + TESTLF(5)).

7 Mean square for lack of fit.

8 Mean square for error from the expanded model.

9 F statistic

10 p-value

Optional Arguments

NOBS — Number of observations. (Input)
Default: NOBS = size (X,1).

NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.
IFRQ — Frequency option. (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number IFRQ of X contains the

frequencies.
Default: IFRQ = 0.
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IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the
weights.
Default: ITWT = 0.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

ICLUST — Clustering option. (Input)
Default: ICLUST = 1.

ICLUST Meaning

0 Cluster groups are input in IGROUP.
1 Cluster groups are obtained using Euclidean distance.
2 Cluster groups are obtained using Mahalanobis distance.

MAXIT — Maximum number of iterations for the cluster analysis to determine near replicates. (Input, if
ICLUST is positive, otherwise, MAXIT is not referenced)
MAXIT = 30 is usually sufficient for convergence.
Default: MAXIT = 30.

TOL — Tolerance used in determining linear dependence for the one-way analysis of covariance model
using clusters as the groups. (Input)
ToL = EPS?/3 is a good choice. For RLOFN, EPS = AMACH(4). See documentation for AMACH in Reference

Material.
Default: TOL = 2.4e-5 for single precision and 3.6d — 11 for double precision.

FORTRAN 90 Interface
Generic: CALL RLOFN (X, IIND, INDIND, IRSP, B, R, DFE, SSE, NGROUP, IGROUP, TESTLF [, ...])
Specific: The specific interface names are S_RLOFN and D_RLOFN.

FORTRAN 77 Interface

Single: CALL RLOFN (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, IFRQ, IWT, B, R, LDR,
DFE, SSE, ICLUST, MAXIT, TOL, NGROUP, IGROUP, TESTLF)
Double: The double precision name is DRLOFN.
Description

Routine RLOFN computes a lack of fit test based on near replicates for a fitted regression model. The data
need not be sorted prior to invoking RLOFN. The column indices of X for determining near replicates must
correspond to the independent variables in the original fitted model. If the groups of near replicates are
known prior to invoking RLOFN, the option ICLUST = 0 allows RLOFN to bypass the computation of the
groups.
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The data can contain missing values indicated by NaN. (NaN is AMACH(6). Routine AMACH is described in the
section “Machine-Dependent Constants” in the Reference Material.) For ICLUST equal to 1 or 2, any row of X
containing NaN as a value for the response, weight, frequency, or independent variables is omitted from the
analysis. For ICLUST equal to 0, if the i-th row of X contains NaN for one of the variables in the analysis, the
i-th element of IGROUP must be 0 on input.

Routine KMEAN (see Chapter 11, “Cluster Analysis”) is used to compute k clusters or groups of near replicates.
Prior to invoking KMEAN, a detached sort of the independent variables in the regression model is performed
using routine SROWR (See Chapter 19, “Utilities”.) If there are fewer than NGROUP distinct observations, a
warning message is issued and k is set equal to the number of distinct observations. Otherwise, k equals
NGROUP. For purposes of the cluster analysis, ICLUST = 1 specifies Euclidean distance and ICLUST = 2 spec-
ifies Mahalanobis distance. For Mahalanobis distance, the data are transformed before invoking KMEAN so
that the Euclidean metric applied by KMEAN for the transformed data is equivalent to the sample Mahalano-
bis distance for the original (untransformed) data.

Let X be the n X p matrix of regressors, and let R be the upper triangular matrix computed from the fitted
regression model. The matrix R can be computed by routines RGLM, RGIVN, or RLEQU for fitting the regres-
sion model. A linear equality restriction on the regression parameters corresponds to a row of R with a
negative diagonal element. Let D be a p X p diagonal matrix with diagonal elements

" [0 otherwise
Let
+f

1

be the i-th row of X, and let ¢; = Ds; where s; satisfies
T. _
R S; =X

Then, the Mahalanobis distance from x; to x; equals the Euclidean distance from ; to t; because

o 2Var| (x,—x; Y| =0 2Var (s, 5,) RS]
=6 (si—s;) Var(RB) (si-s;)
=(5i75;) D(s5i3)
=(t=) (6= 17)

Once the clusters are identified by KMEAN an expanded regression model—a one-way analysis of covariance
model-is fitted to the original (untransformed) data. Denote the original model by y = X B + € and the
expanded model by y = X B + Z y + €. The added regressors that are contained in the n X k matrix Z in the
expanded model are indicator variables specifying cluster membership. The lack of fit test that is computed
is an exact test of the hypothesis that y = 0 in the expanded model. This test was proposed as a lack of fit test
by Christensen (1989).
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Let SSE(X, Z) be the error sum of squares from the fit of the expanded model and let SSE(X) be the error sum
of squares from the fit of the original model. The lack of fit sum of squares is SSE(X) - SSE(X, Z) and the lack
of fit degrees of freedom are DFE(X) - DFE(X, Z). The F statistic for the test of the null hypothesis of no lack
of fit is

_ (SSE(X) — SSE(X,Z))/(DFE(X) — DFE(X,Z2))

F SSE(X,Z)/DFE(X.Z)

Under the hypothesis of no lack of fit, the computed F has an F distribution with numerator and denomina-
tor degrees of freedom DFE(X) - DFE(X, Z) and DFE(X, Z), respectively. The p-value for the test is computed
as the probability that a random variable with this distribution is greater than or equal to the computed F
statistic.

The error degrees of freedom and error sum of squares from the fit of the expanded model are computed as

the error degrees of freedom and sum of squares from the reduced model where Z and y have been adjusted
for X. Routine RCOV is used to fit the reduced model. Let e be the vector of residuals from the original fitted

model, let W be the diagonal matrix whose i-th diagonal element is the product of the weight and frequency
for the i-th observation. The sum of squares and crossproducts matrix for the adjusted Z and y in the reduced
model, which is input into RCOV, is

Z'wz-4AT4 7" we
eTWe

where A is a solution of RTA = DXTW Z.

Comments
1. Workspace may be explicitly provided, if desired, by use of R20FN/DR20FN. The reference is:

CALL R20FN (NOBS, NCOL, X, LDX, INTCEP, IIND, INDIND, IRSP, FRQ, IWT, B, R, LDR, DFE, SSE,
ICLUST, MAXIT, TOL, NGROUP, IGROUP, TESTLF, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length 3 * NOBS + |IIND| + NGROUP + 3 + max{m + 2.8854 * 1n(m)
+ 2,3 * NGROUP, NCOEF}, if ICLUST is positive. If ICLUST = 0, IWK can be an array of
length 1.

WK — Work array of length LwK.
2. Informational errors

Type Code Description

3 1 Convergence did not occur in the cluster analysis for the lack of fit test
within MAXIT iterations. Better results may be obtained by increasing MAXIT.

4 2 An invalid weight or frequency is encountered. Weights and frequencies
must be nonnegative.

= ROQQ?WQ\{E{ RLOFN Chapter 2: Regression 214



Type Code Description

3 3 The matrix of sum of squares and crossproducts computed for the within
cluster model for testing lack of fit is not nonnegative definite within the tol-
erance defined by TOL.

4 4 At least one element in the columns containing the independent variables,

IRSP, IFRQ, or IWT of X contains NaN (not a number), but the corresponding
element in IGROUP is not zero. When ICLUST = 0, missing values in a row of
X are indicated by setting the corresponding row of IGROUP to zero.

Examples

Example 1

This example uses data from Draper and Smith (1981, page 374), which is input in X. A multiple linear regres-
sion of column 6 of X on an intercept and columns 1, 3, and 4 is computed using routine RGIVN. Tests for lack
of fit are computed for choices of NGROUP equal to 4 and 6 using routine RLOFN. Note that for NGROUP equal
to 6 the results are exactly the same as for routine RLOFE. (If there are exact replicates in the data and the
number of clusters used by RLOFN equals the number of distinct cases of the independent variables, then
RLOFN and RLOFE produce the same output.)

USE IMSL_LIBRARIES

IMPLICIT NONE

INTEGER LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP, &
NIND, NOBS, J, INTCEP

PARAMETER (INTCEP=1, NCOL=6, NDEP=1, NIND=3, NOBS=20, &
LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF, &
LDR=NCOEF)

!

INTEGER ICLUST, IDEP, IGROUP(NOBS), IIND, INDDEP(NDEP), &

INDIND (NIND), IRSP, NGROUP, NOUT, NRMISS, NROW

REAL B(LDB,NDEP), DFE, R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
SSE, TESTLF(10), X(LDX,NCOL)

!

DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.0/

DATA (X(2,J),Jd=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.0/

DATA (X(3,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253.0/

DATA (X(4,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.0/

DATA (X(5,J),Jd=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.0/

DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.0/

DATA (xX(7,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210.0/

DATA (X(8,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247.0/

DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.0/

DATA (X(10,J),d=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.0/

DATA (X(11,J),d=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167.0/

DATA (X(12,J),dJ=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.0/

DATA (X(13,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.0/

DATA (X(14,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.0/

DATA (X(15,J),Jd=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.0/

DATA (X(1l6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.0/

DATA (X(17,J),d=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.0/
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DATA (X(18,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166.0/
DATA (X(19,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.0/
DATA (X(20,J),J=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.0/
DATA INDIND/1, 3, 4/, INDDEP/6/
1
NROW = NOBS
IIND = NIND
IDEP = NDEP
CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)
SSE = SCPE(1,1)
IRSP = 6
ICLUST = 2
DO 10 NGROUP=4, 6, 2
CALL RLOFN (X, IIND, INDIND, IRSP, B(l1l:, 1), R, DFE, SSE, NGROUP, &
IGROUP, TESTLF, ICLUST=ICLUST)
CALL UMACH (2, NOUT)
WRITE (NOUT,*) ' '
WRITE (NOUT, *) 'NGROUP = ', NGROUP
CALL WRIRN ('IGROUP', IGROUP, 1, NOBS, 1)
WRITE (NOUT,*) ' '
WRITE (NOUT,99999) Test for Lack of '// &
'Fit!
WRITE (NOUT,99999) Sum of Mean '// &
! Prob. of'
WRITE (NOUT,99999) ' Source of Error DF Squares Square '// &
! F Larger F'
WRITE (NOUT,99999) ' Lack of Fit ', TESTLF (1), TESTLF(4), &
TESTLF(7), TESTLF(9), TESTLF(10)
WRITE (NOUT,99999) ' Expanded model ', TESTLF(2), TESTLF(5), &
TESTLF (8)
WRITE (NOUT,99999) ' Original model ', TESTLF(3), TESTLF (6)

10 CONTINUE
99999 FORMAT
END

Output

NGROUP = 4

Test

Source of Error DF
Lack of Fit 1.0
Expanded model 15.0
Original model 16.0

NGROUP = 6

(A, F5.1, F9.1, F8.2, F7.3,

F10.3)

IGROUP
7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 4 2 4 4 4 4 4 4 4 1 4 4 3

for Lack of Fit
Sum of Mean Prob. of
Squares Square F Larger F
0.4 0.38 0.035 0.855
163.6 10.90
163.9
TIGROUP

7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Test for Lack of Fit

Sum of Mean Prob. of
Source of Error DF Squares Square F Larger F
Lack of Fit 2.0 20.5 10.25 1.001 0.393
Expanded model 14.0 143 .4 10.24
Original model 16.0 163.9

Example 2

This example uses the same data and model from Example 1. Here, the option ICLUST = 0 is input so that the

group numbers for performing the lack of fit test are input.

USE IMSL_LIBRARIES

IMPLICIT  NONE
INTEGER LDB, LDR, LDSCPE, LDX, NCOEF, NCOL, NDEP,
NIND, NOBS, J, INTCEP
PARAMETER (INTCEP=1, NCOL=6, NDEP=1, NIND=3,
LDSCPE=NDEP, LDX=NOBS, NCOEF=INTCEP+NIND, LDB=NCOEF,
LDR=NCOEF)
1
INTEGER ICLUST, IDEP, IGROUP(NOBS), IIND, &
INDDEP (NDEP), INDIND(NIND), IRSP, &
NGROUP, NOUT
REAL B(LDB,NDEP), DFE, R(LDR,NCOEF),
SSE, TESTLF(10), TOL, X(LDX,NCOL), &
XMAX (NCOEF) , XMIN (NCOEF)
|
DATA (X(1,J),J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 246.
DATA (X(2,J),J=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 252.
DATA (X(3,J),0J=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 253
DATA (X(4,J),0=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 164.
DATA (X(5,J),J=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 203.
DATA (X(6,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 173.
DATA (X(7,J),d=1,6)/1.0, 1.0, 0.0, 0.0, 1.0, 210
DATA (X(8,J),dJ=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 247
DATA (X(9,J),J=1,6)/0.0, 1.0, 0.0, 1.0, 0.0, 120.
DATA (X(lO J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 171.
DATA (X(11,J),Jd=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 167
DATA (X(12,J),Jd=1,6)/0.0, 0.0, 1.0, 1.0, 0.0, 172.
DATA (X(13,J),Jd=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 247.
DATA (X(14,J),Jd=1,6)/1.0, 1.0, 1.0, 0.0, 1.0, 252.
DATA (X(15,J),Jd=1,6)/1.0, 0.0, 1.0, 0.0, 1.0, 248.
DATA (X(16,J),J=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 169.
DATA (X(17,J),Jd=1,6)/0.0, 1.0, 0.0, 0.0, 0.0, 104.
DATA (X(18,J),Jd=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 166
DATA (X(19,J),Jd=1,6)/0.0, 1.0, 1.0, 1.0, 0.0, 168.
DATA (X(20,J),Jd=1,6)/0.0, 1.0, 1.0, 0.0, 0.0, 148.
DATA INDIND/1, 3, 4/, INDDEP/6/
DATA IGROUP/4*4, 2, 4, 2, 4, 2, 7*4, 1, 2*4, 3/
|
IIND = NIND

NOBS=20,

0/
0/

.0/

0/
0/
0/

.0/
.0/

0/

0/
.0/
0/
0/
0/
0/
0/
0/
.0/
0/
0/

SCPE (LDSCPE, NDEP) ,

&
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IDEP = NDEP

CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)

SSE = SCPE(1,1)

IRSP =6

ICLUST = 0

NGROUP = 4

CALL RLOFN (X, IIND, INDIND, IRSP, B(l:, 1), R, DFE, SSE, NGROUP, &
IGROUP, TESTLF, iclust=iclust)

CALL UMACH (2, NOUT)

WRITE (NOUT, *)

WRITE (NOUT, *) 'NGROUP = ', NGROUP
CALL WRIRN ('IGROUP', IGROUP, 1, NOBS, 1)
WRITE (NOUT, *) !
WRITE (NOUT,99999) Test for Lack of '// &
'Fit!'
WRITE (NOUT,99999) ' Sum of Mean '// &
' Prob. of'
WRITE (NOUT,99999) ' Source of Error DF Squares Square '// &
! F Larger F'
WRITE (NOUT,99999) ' Lack of Fit ', TESTLF (1), TESTLF(4),&
TESTLF(7), TESTLF(9), TESTLF(10)
WRITE (NOUT,99999) ' Expanded model ', TESTLF(2), TESTLF(5),&
TESTLF (8)
WRITE (NOUT,99999) ' Original model ', TESTLF(3), TESTLF(6)
99999 FORMAT (A, F5.1, F9.1, F8.2, F7.3, F10.3)
END
Output
NGROUP = 4
IGROUP

Source of Error DF
Lack of Fit 1.0
Expanded model 15.0
Original model 16.0

2 4 2 4 4

7 8 9 10 11 12 13 14 15 16 17 18 19 20
4 4 4 4 4 1 4 4 3

Test for Lack of Fit

Sum of Mean Prob. of
Squares Square F Larger F
0.4 0.38 0.035 0.855
163.6 10.90
163.9
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RCASE

Computes case statistics and diagnostics given data points, coefficient estimates

A

B

and the R matrix for a fitted general linear model.

Required Arguments

X — NRX by NCOL matrix containing the data. (Input)
IRSP — Column number IRSP of X contains the data for the response (dependent) variable. (Input)
B — Vector of length NCOEF containing a least-squares solution

A

B

for the regression coefficients. (Input)

R — NCOEF by NCOEF upper triangular matrix containing the R matrix. (Input)
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors

or based on a Cholesky factorization R'R of the matrix of sums of squares and crossproducts of the
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding
diagonal element that is negative. The remaining rows of R must have positive diagonal elements.
Only the upper triangle of R is referenced.

DFE — Degrees of freedom for error. (Input)
SSE — Sum of squares for error. (Input)

CASE — NRX by 12 matrix containing the case statistics. (Output)
Columns 1 through 12 contain the following;:

Col. Description

1 Observed response

2 Predicted response

3 Residual

4 Leverage

5 Standardized residual
6 Jackknife residual

7 Cook’s distance

8 DFFITS

9,10 Confidence interval on the mean
11,12 Prediction interval
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Optional Arguments

IDO — Processing option. (Input)
Default: IDO = 0.

IDO Action

0 This is the only invocation of RCASE for this data set, and all the
data are input at once.

1 This is the first invocation, and additional calls to RCASE will be
made. Case statistics are computed for the data in x.

2 This is an intermediate or final invocation of RCASE. Case statistics
are computed for the data in X.

NRX — Number of rows in X. (Input)
Default: NRX = size (X,1).

NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).

LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDX = size (X,1).

INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IEF — Effect option. (Input)
Default: IEF = -1.

The absolute value of IEF is the number of effects (sources of variation) due to the model. The sign of
IEF specifies the following options.

IEF Meaning

<0 Each effect corresponds to a single regressor (coefficient) in the model. In this case,
arguments NCLVAR, INDCL, NCLVAL, CLVAL, NVEF, INDEF, and IDUMMY are not
referenced.

>0 Each effect corresponds to one or more regressors. A general linear model is specified

through the arguments NCLVAR, INDCL, NCLVAL, CLVAL, NVEF, INDEF, and IDUMMY.

0 There are no effects in the model. INTCEP must equal 1.

NCLVAR — Number of classification variables. (Input, if IEF is positive)

INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification
variables. (Input, if IEF is positive)

NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-
able. (Input, if IEF is positive)
NCLVAL(T) is the number of distinct values for the I-th classification variable.
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CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + ... + NCLVAL(NCLVAR) containing the values of the
classification variables. (Input, if IEF is positive)
The first NCLVAL(1) variables contain the values of the first classification variable; the next NCLVAL(2)
variables contain the values of the second classification variable; and so on. The last NCLVAL(NCLVAR)
variables contain the values of the last classification variable.

NVEF — Vector of length IEF containing the number of variables associated with each effect in the model.
(Input, if IEF is positive)

INDEF — Index vector of length NVEF(1) + NVEF(2) + ... + NVEF(IEF). (Input, if IEF is positive)
The first NVEF(1) elements give the column numbers of X for each variable in the first effect; the next
NVEF(2) elements give the column numbers for each variable in the second effect; and so on. The last
NVEF(NEF) elements give the column numbers for each variable in the last effect.

IDUMMY — Dummy variable option. (Input, if IEF is positive)
Some indicator variables are defined for the I-th class variable as follows: Let
J = NCLVAL(1) + NCLVAL(2) + ... + NCLVAL(T - 1). NCLVAL(T) indicator variables are defined such
that for K =1, 2, ..., NCLVAL(T) the K-th indicator variable for row M of X takes the value 1.0 if
X(M, INDCL(I)) = CLVAL(J + K) and equals 0.0 otherwise. Dummy variables are generated from these
indicator variables in one of the three following ways:

IDUMMY Method

0,1 The NCLVAL(T) indicator variables are the dummy variables (In RCASE, the computa-
tions for IDUMMY = 0 and IDUMMY = 1 are the same. The two values 0 and 1 are
provided so that RCASE can be called after routine RGLM with no change in TDUMMY.)

2 The first NCLVAL(T) - 1 indicator variables are the dummy variables. The last indicator
variable is omitted.

3 The &-th indicator variable minus the NCLVAL (I)-th indicator variable is the K-th
dummy variable (k =1, 2, ..., NCLVAL(I) - 1).

IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the
weights, and the computed prediction interval uses SSE/(DFE * X(I, IWT)) for the estimated variance
of a future response.
Default: IWT = 0.

IPRED — Prediction interval option. (Input)
IPRED = 0 means that prediction intervals are desired for a single future response. For positive IPRED,
column number IPRED of X contains the number of future responses for which a prediction interval is
desired on the average of the future responses.
Default: IPRED = 0.

CONPCM — Conlfidence level for two-sided interval estimates on the mean, in percent. (Input)
CONPCM percent confidence intervals are computed, hence, CONPCM must be greater than or equal to
0.0 and less than 100.0. CONPCM often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence
level ONECL, where ONECL is greater than or equal to 50.0 and less than 100.0, set
CONPCM = 100.0 - 2.0 * (100.0 - ONECL).
Default: CONPCM = 95.0.

CONPCP — Confidence level for two-sided prediction intervals, in percent. (Input)
CONPCP percent prediction intervals are computed, hence, CONPCP must be greater than or equal to
0.0 and less than 100.0. CONPCP often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence
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level ONECL, where ONECL is greater than or equal to 50.0 and less than 100.0, set
CONPCP =100.0 - 2.0 * (100.0 - ONECL).
Default: CONPCP = 95.0.
PRINT — Printing option. (Input)
Default: PRINT = ‘N’
PRINT is a character string indicating what is to be printed. The PRINT string is composed of one-
character print codes to control printing. These print codes are given as follows:

PRINT(I:I) Printing that Occurs

‘A’ All

N None

1 Observed response

2 Predicted response

‘3’ Residual

4 Leverage

‘5’ Standardized residual

‘6 Jackknife residual

7 Cook’s distance

‘8’ DFFITS

™’ Confidence interval on the mean
‘P’ Prediction interval

X Influential cases (unusual “x-value”)
Y’ Outlier cases (unusual “y-value”)

The concatenated print codes ‘2’, ‘N’, “1’, ..., ‘P’ that comprise the PRINT string give the combination of sta-
tistics to be printed. Concatenation of these codes with print codes "X’ or ‘Y’ restricts printing to cases
determined to be influential or outliers. Here are a few examples.

PRINT Printing Action

‘a’ All

N None.

‘46’ Leverage and jackknife residual for all cases.

‘AxyY’ All statistics are printed for cases that are highly influen-

tial or are outliers.

‘46xY’ Leverage and jackknife residual are printed for cases that
are highly influential or are outliers.

IOBS — Number of the observation corresponding to the first row of X. (Input)
This observation number is used only for printing the row labels for the individual case statistics.
Default: TOBS = size (X,1).

NCOEF — Number of regression coefficients in the model. (Input)
Default: NCOEF = size (B,1).
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LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

LDCASE — Leading dimension of CASE exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCASE = size (CASE,1).

NRMISS — Number of rows of CASE containing NaN (not a number). (Output)
If any row of data contains NaN as a value of a variable other than the response variable, columns 3
through 12 of the corresponding row in CASE are set to NaN. If the response is missing, columns 1, 3,
and 5 through 8 are set to NaN.

FORTRAN 90 Interface

Generic: CALL RCASE (X, IRSP, B, R, DFE, SSE, CASE [, ...])
Specific: The specific interface names are S_RCASE and D_RCASE.

FORTRAN 77 Interface

Single: CALL RCASE (IDO, NRX, NCOL, X, LDX, INTCEP, IEF, NCLVAR, INDCL, NCLVAL, CLVAL,
NVEF, INDEF, IDUMMY, IRSP, IWT, IPRED, CONPCM, CONPCP, PRINT, IOBS, NCOEF, B, R,
LDR, DFE, SSE, CASE, LDCASE, NRMISS)

Double: The double precision name is DRCASE.

Description

The general linear model used by routine RCASE is

y=XB+e¢
where y is the n X 1 vector of responses, X is the n X p matrix of regressors, B is the p X 1 vector of regression
coefficients, and ¢ is the n X 1 vector of errors whose elements are independently normally distributed with
mean 0 and variance 02/w;. The model used by RCASE also permits linear equality restrictions on B. From a
general linear model fitted using the w;’s as the weights, routine RCASE computes confidence intervals and
statistics for the individual cases that constitute the data set. Let x; be a column vector containing elements of
the i-th row of X. Let W = diag(wy, wy, ..., w,,). The leverage is defined as

h; = x,-T<XTWX> xXw;

(In the case of linear equality restrictions on B, the leverage is defined in terms of the reduced model.) Put
D = diag(dy, dy, ..., dy) with d; = 1 if the j-th diagonal element of R is positive and 0 otherwise. The leverage is

computed as h; = (a"Da)w; where a is a solution to RTa = x;. The estimated variance of
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is given by h;s?/w;, where s?> = SSE/DFE. The computation of the remainder of the case statistics follows eas-
ily from their definitions. See the Diagnostics for Individual Cases section in the chapter introduction for
definitions of the case diagnostics.

Often predicted values and confidence intervals are desired for combinations of settings of the effect vari-
ables not used in computing the regression fit. This can be accomplished using a single data matrix by
including these settings of the variables as part of the data matrix and by setting the response equal to NaN
(not a number). NaN can be retrieved by the invocation of the function AMACH(6). The regression routine per-
forming the fit will omit the case, and RCASE will compute a predicted value and confidence interval for the
missing response from the given settings of the effect variables.

The type 3 informational errors can occur if the input variables X, R, B and SSE are not consistent with each
other or if excessive rounding has occurred in their computation. The type 3 error message with error code 2
arises when X contains a row not in the space spanned by the rows of R. An examination of the model that
was fitted and the X for which diagnostics are to be computed is required in order to insure that only linear
combinations of the regression coefficients that can be estimated from the fitted model are specified in X. For
further details, see the discussion of estimable functions given by Maindonald (1984, pages 166-168) and
Searle (1971, pages 180-188).

Comments
1. Workspace may be explicitly provided, if desired, by use of R2ZASE/DR2ASE. The reference is:

CALL R2ASE (IDO, NRX, NCOL, X, LDX, INTCEP, IEF, NCLVAR, INDCL, NCLVAL, CLVAL, NVEF,
INDEF, IDUMMY, IRSP, IWT, IPRED, CONPCM, CONPCP, PRINT, IOBS, NCOEF, B, R, LDR, DFE,
SSE, CASE, LDCASE, NRMISS, WK)

The additional argument is:
WK — Work vector of length NCOEF + 1.
2. Informational errors
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Type

Examples

Example 1

Code

Description
A weight is negative. Weights must be nonnegative.

The linear combination of the regression coefficients specified is not estima-
ble within the preset tolerance.

A leverage much greater than 1.0 was computed. It is set to 1.0.

A deleted residual mean square much less than 0.0 was computed. It is set to
0.0.

A number of future observations for the prediction interval is nonpositive. It
must be positive.

A multiple linear regression model is fitted and case statistics computed for data discussed by Cook and
Weisberg (1982, page 103). The fitted model is

A A A A
Y= Bt Bix1 + Byxy

Some of the statistics in row 6 of the output matrix CASE are undefined (0.0/0.0) and are set to NaN (not a
number). Some statistics in row 4 of CASE are set to Inf (positive machine infinity). The values of NaN and
positive machine infinity can be retrieved by routine AMACH (or DMACH when using double precision), which
is documented in the section “Machine-Dependent Constants” in Reference Material.

USE RCASE_INT
USE RGIVN_INT

IMPLICIT
INTEGER

PARAMETER

INTEGER
REAL

CHARACTER

DATA
DATA
DATA
DATA
DATA
DATA
DATA

IIND =

NONE

INTCEP, LDB, LDCASE, LDR, LDSCPE, LDX, NCOEF, NCOL, &
NDEP, NIND, NROW, J, NRMISS

(INTCEP=1, NCOL=3, NDEP=1, NIND=2, NROW=7, &
LDCASE=NROW, LDSCPE=NDEP, LDX=NROW, &
NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)

IDEP, IEF, IIND, INDDEP (1), INDIND(1l), IOBS, IRSP
B(LDB,NDEP), CASE(LDCASE,12), DFE, R(LDR,NCOEF), &
SCPE (LDSCPE,NDEP) , SSE, X(LDX,NCOL)
PRINT*1
J),J=1,NIND+NDEP) /1.0, 1.0, 3.0/
J),J=1,NIND+NDEP) /1.0, 2.0, 4.0/
J),J=1,NIND+NDEP) /1.0, 3.0, 5.0/
J) ,J=1,NIND+NDEP) /1.0, 4.0, 7.0/
J) ,J=1,NIND+NDEP) /1.0, 5.0, 7.0/
J),J=1,NIND+NDEP) /0.0, 6.0, 8.0/
J),J=1,NIND+NDEP) /1.0, 7.0, 9.0/
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IDEP = -NDEP

CALL RGIVN (X, IIND,
IEF = -NIND

IRSP = NCOL
PRINT = 'A'

I0BS =1

SSE = SCPE(1,1)

CALL RCASE (X,

PRINT=PRINT,

IRSP, B(l:,1),
iobs=iobs,

INDIND,

IDEP,

R, DFE,
ncoef=ncoef,

INDDEP,

SSE,

B, R=R, DFE=DFE,

CASE,

ief=ief, &

nrmiss=nrmiss)

SCPE=SCPE)

END
Output
* * * Case Analysis * * *
Obs. Observed Predicted Residual Leverage Std. Res. Jack Res.
Cook’s D DFFITS 95.0% CI 95.0% CI 95.0% PI 95.0% PI
1 3.0000 3.1286 -0.1286 0.4714 -0.3886 -0.3430
0.0449 -0.3240 2.2609 3.9962 1.5957 4.6614
2 4.0000 4.1429 -0.1429 0.2857 -0.3714 -0.3273
0.0184 -0.2070 3.4674 4.8183 2.7100 5.5757
3 5.0000 5.1571 -0.1571 0.1857 -0.3826 -0.3376
0.0111 -0.1612 4.6126 5.7017 3.7812 6.5331
Y 4 7.0000 6.1714 0.8286 0.1714 2.0000 Inf
0.2759 Inf 5.6482 6.6946 4.8038 7.5391
5 7.0000 7.1857 -0.1857 0.2429 -0.4689 -0.4178
0.0235 -0.2366 6.5630 7.8084 5.7770 8.5945
X 6 8.0000 8.0000 0.0000 1.0000 NaN NaN
NaN NaN 6.7364 9.2636 6.2129 9.7871
7 9.0000 9.2143 -0.2143 0.6429 -0.7878 -0.7423
0.3724 -0.9959 8.2011 10.2275 7.5946 10.8339
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Figure 2.6 — Plot of Leverages h; and the Average (p/n = 3/7)

Example 2

A one-way analysis of covariance model is fitted to the turkey data discussed by Draper and Smith (1981,
pages 243-249). The response variable is turkey weight y (in pounds). There are three groups of turkeys cor-
responding to the three states where they were reared. The age of a turkey (in weeks) is the covariate. The

explanatory variables are group, age, and interaction. The model is

Yij=utotpx it pxite; i=1,2,3 j=1,2,

.5 NG

where &3 = 0 and B3 = 0. Routine RGLM is used to fit the model. The option IDUMMY = 2 is used. The fitted
model gives three separate lines, one for each state where the turkeys were reared. Then, RCASE is used to

compute case statistics from the fitted model.

USE RCASE_INT
USE RGLM_INT
USE AMACH_INT

INTEGER IDEP, IEF, INTCEP, LDB, LDCASE, LDR, LDSCPE, LDX, &
MAXB, MAXCL, NCLVAR, NCOL, NROW

PARAMETER (IDEP=1, IEF=3, INTCEP=1, MAXB=6, MAXCL=3, NCLVAR=1,
NCOL=3, NROW=13, LDB=MAXB, LDCASE=NROW, LDR=MAXB, &
LDSCPE=IDEP, LDX=NROW)

|

INTEGER IDUMMY, INDCL(NCLVAR), INDDEP(IDEP), &
INDEF (4), IOBS, IRANK, IRBEF(IEF+1), IRSP, &
NCLVAL (NCLVAR) , NCOEF, NRMISS, NVEF (IEF)

REAL B(LDB, IDEP), CASE(LDCASE,12), CLVAL(MAXCL), &

&
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DFE, R(LDR,MAXB), SCPE(LDSCPE, IDEP), SSE, X(LDX,NCOL)

CHARACTER PRINT

DATA (X(1,J),Jd=1,3) /25.0, 13.8, 3.0/
DATA (X(2,J),J=1,3) /28.0, 13.3, 1.0/
DATA (X(3,J),J=1,3) /20.0, 8.9, 1.0/
DATA (X(4,J),J=1,3) /32.0, 15.1, 1.0/
DATA (X(5,J),Jd=1,3) /22.0, 10.4, 1.0/
DATA (X(6,J),Jd=1,3) /29.0, 13.1, 2.0/
DATA (X(7,J),Jd=1,3) /27.0, 12.4, 2.0/
DATA (X(8,J),J=1,3) /28.0, 13.2, 2.0/
DATA (X(9,J),J=1,3) /26.0, 11.8, 2.0/
DATA (X(10,J),d=1,3) /21.0, 11.5, 3.0/
DATA (X(11,J),Jd=1,3) /27.0, 14.2, 3.0/
DATA (X (12,J),Jd=1,3) /29.0, 15.4, 3.0/
DATA (X(13,J),Jd=1,3) /23.0, 13.1, 3.0/
DATA INDCL/3/, NVEF/1, 1, 2/, INDEF/3, 1, 1, 3/, INDDEP/2/

IDUMMY = 2

CALL RGLM (X, INDCL, NVEF, INDEF, IDEP, INDDEP, MAXCL, B, &
IDUMMY=IDUMMY, NCLVAL=NCLVAL, CLVAL=CLVAL, IRBEF=IRBEF, &

R=R, DFE=DFE, SCPE=SCPE)

PRINT = 'A'

IRSP = INDDEP (1)

IPRED = 0

PRINT = 'A'

I0BS =1

NCOEF = IRBEF(IEF+1) - 1
SSE = SCPE(1,1)

CALL RCASE (X, IRSP, B(l:, 1), R, DFE, SSE, CASE, IEF=IEF, &
NCLVAR=NCLVAR, INDCL=INDCL, NCLVAL=NCLVAL, CLVAL=CLVAL, &

NVEF=NVEF, INDEF=INDEF, IDUMMY=IDUMMY, IOBS=IOBS,
PRINT=PRINT, NCOEF=NCOEF)

END
Output
* * * Case Analysis * * *

Obs. Observed Predicted Residual Leverage Std. Res.

Cook’s D DFFITS 95.0% CI 95.0% CI 95.0%

1 13.8000 13.6000 0.2000 0.2000 0.7040
0.0207 0.3381 13.2641 13.9359 12.7773

2 13.3000 13.1901 0.1099 0.3187 0.4192
0.0137 0.2688 12.7661 13.6141 12.3276

3 8.9000 9.1418 -0.2418 0.5824 -1.1779
0.3225 -1.4383 8.5686 9.7149 8.1970

4 15.1000 15.2143 -0.1143 0.7143 -0.6732
0.1888 -1.0189 14.5795 15.8490 14.2309

5 10.4000 10.1538 0.2462 0.3846 0.9879
0.1017 0.7795 9.6881 10.6196 9.2701

6 13.1000 13.3300 -0.2300 0.7000 -1.3221
0.6797 -2.1585 12.7016 13.9584 12.3507

Jack Res.
95.0% PI
0.6762
14.4227
0.3930
14.0526
-1.2178
10.0865
-0.6444
16.1976
0.9860
11.0376
-1.4131
14.3093
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7 12.4000 12.3900 0.0100 0.3000 0.0376 0.0348
0.0001 0.0228 11.9786 12.8014 11.5337 13.2463
8 13.2000 12.8600 0.3400 0.3000 1.2795 1.3533
0.1169 0.8859 12.4486 13.2714 12.0037 13.7163
9 11.8000 11.9200 -0.1200 0.7000 -0.6898 -0.6615
0.1850 -1.0104 11.2916 12.5484 10.9407 12.8993
10 11.5000 11.8200 -0.3200 0.6000 -1.5930 -1.8472
0.6344 -2.2623 11.2382 12.4018 10.8700 12.7700
11 14.2000 14.4900 -0.2900 0.3000 -1.0913 -1.1091
0.0851 -0.7261 14.0786 14.9014 13.6337 15.3463
12 15.4000 15.3800 0.0200 0.6000 0.0996 0.0922
0.0025 0.1130 14.7982 15.9618 14.4300 16.3300
13 13.1000 12.7100 0.3900 0.3000 1.4676 1.6330
0.1538 1.0691 12.2986 13.1214 11.8537 13.5663
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ROTIN

Computes diagnostics for detection of outliers and influential data points given residuals and the R matrix
for a fitted general linear model.

Required Arguments

X — NRX by NCOL matrix containing the data. (Input)

IIND — Independent variable option. (Input)

The absolute value of IIND is the number of independent (explanatory) variables. The sign of IIND
specifies the following options:

IIND Meaning

<0 The data for the -I1IND independent variables are given in the
first -IIND columns of X.

>0 The data for the TIND independent variables are in the columns
of X whose column numbers are given by the elements of INDIND.

=0 There are no independent variables.

The regressors are the constant regressor (if INTCEP = 1) and the independent variables.

INDIND — Index vector of length IIND containing the column numbers of X that are the independent
(explanatory) variables. (Input, if IIND is positive)
If TIND is nonpositive, INDIND is not referenced and can be a vector of length one.

R — INTCEP + |IIND| by INTCEP + |IIND| upper triangular matrix containing the R matrix. (Input)
The R matrix can come from a regression fit based on a QR decomposition of the matrix of regressors

or based on a Cholesky factorization R'R of the matrix of sums of squares and crossproducts of the
regressors. Elements to the right of a diagonal element of R that is zero must also be zero. A zero row
indicates a nonfull rank model. For an R matrix that comes from a regression fit with linear equality
restrictions on the parameters, each row of R corresponding to a restriction must have a corresponding
diagonal element that is negative. The remaining rows of R must have positive diagonal elements.

DFE — Degrees of freedom for error. (Input)
SSE — Sum of squares for error. (Input)

E — Vector of length NRX with the residuals. (Input)
If a residual is not known, e.g., the value for the dependent (response) variable was missing, the input
value of the corresponding element of E should equal NaN (not a number).

OTIN — NRX by 6 matrix containing diagnostics for detection of outliers and influential cases. (Output)
The columns of OTIN contain the following:

Col. Description

1 Residual

2 Leverage (diagonal element of the “Hat” matrix)
3 Standardized residual

4 Jackknife (deleted) residual
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5 Cook’s Distance

6 DFFITS

Optional Arguments

NRX — Number of rows of data. (Input)
Default: NRX = size (X,1).
NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: L.DX = size (X,1).
INTCEP — Intercept option. (Input)
Default: INTCEP = 1.

INTCEP Action
0 An intercept is not in the model.
1 An intercept is in the model.

IWT — Weighting option. (Input)
IWT = 0 means that all weights are 1.0. For positive IWT, column number IWT of X contains the
weights.
Default: TWT = 0.

LDR — Leading dimension of R exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDR = size (R,1).

LDOTIN — Leading dimension of OTIN exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDOTIN = size (OTIN,1).

NRMISS — Number of rows of OTIN containing NaN (not a number). (Output)
If any row of data contains NaN as a value of the independent variable or weight, elements in columns
2 thru 6 of the corresponding row in OTIN are set to NaN. If the residual is missing, elements in col-
umns 3 thru 6 are set to NalN.

FORTRAN 90 Interface

Generic: CALL ROTIN (X, IIND, INDIND, R, DFE, SSE, E, OTIN [, ...])
Specific: The specific interface names are S_ROTIN and D_ROTIN.

FORTRAN 77 Interface

Single: CALL ROTIN (NRX, NCOL, X, LDX, INTCEP, IIND, INDIND, IWT, R, LDR, DFE, SSE, E, OTIN,
LDOTIN, NRMISS)
Double: The double precision name is DROTIN.
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Description

The multiple regression model used by routine ROTIN is

y=XP+e¢
where y is the n X 1 vector of responses, X is the n X p matrix of regressors, B is the p X 1 vector of regression
coefficients, and € is the n X 1 vector of errors whose elements are independently normally distributed with
mean 0 and variance 62/w;. The model used by ROTIN also permits linear equality restrictions on B. From a
multiple regression model fit using the w;’s as the weights, routine ROTIN computes diagnostics for outliers
and influential cases. Let x; be a column vector containing elements of the i-th row of X. Let
W = diag(w,, wy, ..., w,). The leverage is defined as

hi = X?(XTWX)_XZ'WI'

(In the case of linear equality restrictions on B, the leverage is defined in terms of the reduced model.) Put
D = diag(dy, dy, ..., dy) with d; = 1 if the j-th diagonal element of R is positive and 0 otherwise. The leverage is
computed as h; = (al Da)w; where a is a solution to Ra = x;. The computation of the remainder of the case

diagnostics follows easily from their definitions. See the Diagnostics for Individual Cases section in the chapter
introduction for definitions of the case diagnostics.

The type 3 informational errors can occur if the input variables X, R, E and SSE are not consistent with each
other or if excessive rounding has occurred in their computation.The type 3 error message with error code 2
arises when X contains a row not in the space spanned by the rows of R. An examination of the model that
was fitted and the X for which diagnostics are to be computed is required in order to insure that only linear
combinations of the regression coefficients that can be estimated from the fitted model are specified in X. For
further details, see the discussion of estimable functions given by Maindonald (1984, pages 166-168) and
Searle (1971, pages 180-188).

Comments
1. Workspace may be explicitly provided, if desired, by use of R2TIN/DR2TIN. The reference is:

CALL R2TIN (NRX, NCOL, X, LDX, INTCEP, IIND, INDIND, IWT, R, LDR, DFE, SSE, E, OTIN,
LDOTIN, NRMISS, WK)

The additional argument is:
WK — Work vector of length INTCEP + |IIND].
2. Informational errors

Type Code Description

3 2 The linear combination of the regression coefficients specified is not estima-
ble within the preset tolerance.

3 3 A leverage much greater than 1.0 was computed. It is set to 1.0.

3 4 A deleted residual mean square much less than 0.0 was computed. It is set to
0.0.

4 1 A weight is negative. Weights must be nonnegative.
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Examples

Example 1

A multiple linear regression model is fit and case statistics computed for data discussed by Cook and

Weisberg (1982, page 103). The fitted model is

A A A A
Y= Byt Bixy + Byrxy

Some of the statistics in row 6 of the output matrix OTIN are undefined (0.0/0.0) and are set to NaN (not a
number). Some statistics in row 4 of OTIN are infinite and are set to machine infinity. The values of NaN and
machine infinity can be retrieved by routine AMACH (or DMACH when using double precision), which is docu-

mented in Reference Material.

USE IMSL_LIBRARIES

IMPLICIT NONE

INTEGER INTCEP, LDB, LDOTIN, LDR, LDSCPE, LDX, NCOEF, NCOL, &

NDEP, NIND, NROW, J

PARAMETER (INTCEP=1, NCOL=3, NDEP=1, NIND=2, NROW=7,

LDOTIN=NROW, LDSCPE=NDEP, LDX=NROW, &
NCOEF=INTCEP+NIND, LDB=NCOEF, LDR=NCOEF)

INTEGER I, IDEP, IIND, INDDEP(1l), INDIND(1l), NOUT, NRMISS
REAL B(LDB,NDEP), D(NCOEF), DFE, E(NROW), &
OTIN(LDOTIN, 6), R(LDR,NCOEF), SCPE(LDSCPE,NDEP), &
SSE, X(LDX,NCOL), XMAX(NCOEF), XMIN(NCOEF)
CHARACTER CLABEL(7)*10, RLABEL(1l)*6
1
DATA CLABEL/'Obs.', 'Residual', 'Leverage', 'Std. Res.',K6 &

'Jack. Res.', 'Cook''s D', 'DFFITS'/
DATA RLABEL/ 'NUMBER'/

DATA (X(1,J),J=1,NIND+NDEP) /1.0, 1.0, 3.0/
DATA (X(2,J),J=1,NIND+NDEP) /1.0, 2.0, 4.0/
DATA (X(3,J),J=1,NIND+NDEP) /1.0, 3.0, 5.0/
DATA (X(4,J),J=1,NIND+NDEP) /1.0, 4.0, 7.0/
DATA (X(5,J),J=1,NIND+NDEP) /1.0, 5.0, 7.0/
DATA (X(6,J),J=1,NIND+NDEP) /0.0, 6.0, 8.0/
DATA (X(7,J),J=1,NIND+NDEP) /1.0, 7.0, 9.0/
|
IIND = -NIND
IDEP = -NDEP

CALL RGIVN (X, IIND, INDIND, IDEP, INDDEP, B, R=R, DFE=DFE, SCPE=SCPE)

SSE = SCPE(1,1)
! Compute residuals.
DO 10 I=1, NROW

E(I) = X(I,NCOL) - B(1,1) - SDOT(NIND, B((INTCEP+1):
1

, X(I:, 1), LDX)
10 CONTINUE

CALL ROTIN (X, IIND, INDIND, R, DFE, SSE, E, OTIN,
NRMISS=NRMISS)

1), &
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CALL WRRRL ('OTIN', OTIN, RLABEL, CLABEL, FMT='(F10.3)"')
CALL UMACH (2, NOUT)

WRITE (NOUT, *) 'NRMISS = ', NRMISS
1
END
Output
OTIN
Obs. Residual Leverage Std. Res. Jack. Res. Cook’s D DFFITS
1 -0.129 0.471 -0.389 -0.343 0.045 -0.324
2 -0.143 0.286 -0.371 -0.327 0.018 -0.207
3 -0.157 0.186 -0.383 -0.338 0.011 -0.161
4 0.829 0.171 2.000 Inf 0.276 Inf
5 -0.186 0.243 -0.469 -0.418 0.024 -0.237
6 0.000 1.000 NaN NaN NaN NaN
7 -0.214 0.643 -0.788 -0.742 0.372 -0.996
NRMISS = 1
Example 2

In this example, routine RNLIN is first invoked to fit the following nonlinear regression model discussed by
Neter, Wasserman, and Kutner (1983, pages 475-478):

0% .
y;=be” te i=1,2, ..., 15

Then, ROTIN is used to compute case diagnostics. In addition, the leverage output by ROTIN is used to con-
struct asymptotic confidence intervals on the mean of the nonlinear regression function evaluated at x;. The

asymptotic 95% confidence intervals are computed using the formula:

A 2
Vi F tors pre\S°h;

where h; is the computed leverage, t g75,ppr is the 97.5 percentile of the t distribution with DFE degrees of

freedom as computed by routine TIN (see Chapter 17, “Probability Distribution Functions and Inverses”), and s?

equals SSE/DFE.
USE IMSL_LIBRARIES
IMPLICIT  NONE

INTEGER LDOTIN, LDR, NOBS, NPARM, NRX
PARAMETER (NOBS=15, NPARM=2, NRX=1, LDOTIN=NRX, LDR=NPARM)

INTEGER IDERIV, IDUMMY (1), IEND, IOBS, IRANK, J, NOUT, NRMISS
REAL A, DE(NPARM, 1), DFE, E(1), FRQ, OTIN(LDOTIN,6), &
R(LDR,NPARM), SQRT, SSE, THETA(NPARM), WT, Y, &
YHAT

INTRINSIC SQRT
EXTERNAL EXAMPL
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DATA THETA/60.0, -0.03/
CALL UMACH (2, NOUT)

IDERIV = 1
CALL RNLIN (EXAMPL, THETA, R=R, DFE=DFE, SSE=SSE)

WRITE (NOUT,*) ' Obs. Pred. Res. Lev. St Res Del Res Cook '// &
'D DFFIT Conf Interval'
DO 10 IOBS=1, NOBS
CALL EXAMPL (NPARM, THETA, 0, IOBS, FRQ, WT, E, DE, IEND)
CALL EXAMPL (NPARM, THETA, 1, IOBS, FRQ, WT, E, DE, IEND)
CALL EXAMPL (NPARM, THETA, 2, IOBS, FRQ, WT, Y, DE, IEND)
YHAT = Y - E(1)
CALL ROTIN (DE, -NPARM, IDUMMY, R, DFE, SSE, E, OTIN, &
NRX=NRX, LDX=1, INTCEP=0)
A = TIN(0.975,DFE) *SQRT( (SSE/DFE) *OTIN(1,2))
WRITE (NOUT,' (F5.1,10F7.2)') Y, YHAT, (OTIN(1l
YHAT - A, YHAT +

,J),J=1,6), &
A
10 CONTINUE

END

SUBROUTINE EXAMPL (NPARM, THETA, IOPT, IOBS, FRQ, WT, E, DE, &

IEND)
INTEGER NPARM, IOPT, IOBS, IEND
REAL THETA (NPARM), FRQ, WT, E(1l), DE(NPARM, 1)

INTEGER NOBS
PARAMETER (NOBS=15)

REAL EXP, XDATA (NOBS), YDATA (NOBS)
INTRINSIC EXP

DATA YDATA/54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0, &
3.0, 8.0, 11.0, 8.0, 4.0, 6.0/

DATA XDATA/2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, &
38.0, 45.0, 52.0, 53.0, 60.0, 65.0/

IF (IOBS .LE. NOBS) THEN

WT = 1.0E0
FRQ = 1.0EO
IEND = O
IF (IOPT .EQ. 0) THEN
E(1l) = YDATA(IOBS) - THETA(1l)*EXP(THETA (2) *XDATA (IOBS))
ELSE IF (IOPT .EQ. 1) THEN
DE(1, 1) = -EXP(THETA(2)*XDATA(IOBS))
DE(2, 1) = -THETA(1l) *XDATA (IOBS) *EXP (THETA (2) *XDATA (IOBS) )
ELSE IF (IOPT .EQ. 2) THEN
E(1l) = YDATA(IOBS)
END IF
ELSE
IEND = 1
END IF
RETURN
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END

Output
Obs. Pred. Res. Lev. St Res Del Res Cook D DFFIT Conf Interval
54.0 54.15 -0.14 0.40 -0.09 -0.09 0.00 -0.07 51.19 56.53
50.0 48.08 1.92 0.24 1.13 1.14 0.21 0.65 49.84 54.00
45.0 44.42 0.58 0.18 0.33 0.32 0.01 0.15 43.79 47.37
37.0 39.45 -2.45 0.13 -1.34 -1.39 0.13 -0.54 33.04 36.07
35.0 33.67 1.33 0.11 0.72 0.71 0.03 0.24 34.96 37.70
25.0 27.62 -2.63 0.11 -1.42 -1.49 0.12 -0.52 21.00 23.75
20.0 20.94 -0.94 0.12 -0.51 -0.50 0.02 -0.18 17.61 20.51
16.0 17.18 -1.18 0.12 -0.65 -0.63 0.03 -0.23 13.35 16.29
18.0 15.26 2.74 0.12 1.50 1.58 0.15 0.58 19.29 22.20
13.0 13.02 -0.02 0.11 -0.01 -0.01 0.00 0.00 11.56 14.40
8.0 9.87 -1.87 0.10 -1.01 -1.01 0.06 -0.33 4.81 7.45
11.0 7.48 3.52 0.08 1.88 2.12 0.15 0.62 13.33 15.70
8.0 7.19 0.81 0.08 0.43 0.42 0.01 0.12 7.64 9.97
4.0 5.45 -1.45 0.06 -0.77 -0.75 0.02 -0.19 1.53 3.57
6.0 4.47 1.53 0.05 0.80 0.79 0.02 0.18 6.61 8.45
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GCLAS

Gets the unique values of each classification variable.

Required Arguments

X — NROW by NCOL matrix containing the data. (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification
variables. (Input)

MAXCL — An upper bound on the sum of the number of distinct values taken on by each classification
variable. (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-
able. (Output, if IDO = 0 or IDO = 1; input/output, if IDO = 2 or IDO = 3) NCLVAL(I) is the number of
distinct values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + ... + NCLVAL(NCLVAR) containing the values of the
classification variables. (Output, if IDO = 0 or IDO = 1; Input/Output, if IDO =2 or IDO = 3)
Since in general the length of CLVAL will not be known in advance, MAXCL (an upper bound for this
length) should be used for purposes of dimensioning CLVAL. The first NCLVAL(1) variables contain the
values of the first classification variable; the next NCLVAL(2) variables contain the values of the second
classification variable; and so on. The last NCLVAL(NCLVAR) variables contain the values of the last
classification variable. After invocation of GCLAS with IDO = 3, CLVAL contains the values sorted in
ascending order by the classification variable.

Optional Arguments

IDO — Processing option. (Input)
Default: IDO = 0.

IDO Action
0 This is the only invocation of GCLAS for this data set, and all the data are input at once.
1 This is the first invocation, and additional calls to GcLAS will be made. Unique values

for the classification variables are retrieved from Xx.

2 This is an intermediate invocation of GCLAS. Unique values for the classification vari-
ables are retrieved from x.

3 This is the final invocation of GCLAS. Unique values for the classification variables are
retrieved from X, and the values in CLVAL are sorted in ascending order for each classi-
fication variable.

NROW — Number of rows of data in X. (Input)
Default: NROW = size (X,1).
NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: LDX = size (X,1).
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NCLVAR — Number of classification variables. (Input)
Default: NCLVAR = size (INDCL,1).

NMISS — Vector of length NCLVAR containing the number of elements of the data containing NaN for any
classification variable. (Output, if IDO = 0 or IDO = 1; input/output if IDO =2 or IDO = 3)

FORTRAN 90 Interface

Generic: CALL GCLAS (X, INDCL, MAXCL, NCLVAL, CLVAL [, ...])
Specific: The specific interface names are S_GCLAS and D_GCLAS.

FORTRAN 77 Interface

Single: CALL GCLAS (IDO, NROW, NCOL, X, LDX, NCLVAR, INDCL, MAXCL, NCLVAL, CLVAL, NMISS)
Double: The double precision name is DGCLAS.
Description

Routine GCLAS gets the unique values of m (Input in NCLVAR) classification variables. The routine can be
used in conjunction with routine GRGLM. Routine GRGLM requires the values of the classification variables
output by GCLAS in order to generate dummy variables for the general linear model.

In the input array X, missing values for a classification variable can be indicated by NaN (not a number).
NAN is represented by AMACH(6). (See the section Machine-Dependent Constants in the Reference Material for a
further discussion of AMACH, and missing values.) The nonmissing values of the classifications variables are
output in CLVAL. If for a particular row of X a value of a classification variable is missing, nonmissing values
of the other classification variables are still used. The number of elements equal to NaN for each classification
variable is output in NMISS.

Comments

Informational Error

Type Code Description
4 1 MAXCL is too small. Increase MAXCL and the dimension of CLVAL.
Example

In the following example, the unique values of two classification variables are obtained from a data set XX
with six rows. Here, routine GCLAS is invoked repeatedly with one row of the data set input into X at a time.
Initially, GCLAS is invoked with IDO = 1, then with IDO = 2 for each of the six rows of data, and finally with
IDO =3.

USE GCLAS_INT
USE SCOPY_INT
USE WRRRL_INT
USE WRIRL_INT

IMPLICIT NONE
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INTEGER LDX, LDXX, MAXCL, NCLVAR, NCOL, NOBS, J
PARAMETER (LDX=1, MAXCL=5, NCLVAR=2, NCOL=2, NOBS=6, LDXX=NOBS)

INTEGER I, IDO, INDCL(NCLVAR), NCLVAL(NCLVAR), NMISS(NCLVAR), &
NROW
REAL CLVAL (MAXCL), X(LDX,NCOL), XX(LDXX,NCOL)

CHARACTER CLABEL(2)*8, RLABEL(1l)*17

DATA INDCL/1, 2/, NCLVAL/2, 3/

DATA (XX(1,J),J=1,NCOL)/10.0, 5.0/
DATA (XX(2,J),J=1,NCOL)/20.0, 15.0/
DATA (XX (3,J),J=1,NCOL)/20.0, 10.0/
DATA (XX (4,J),J=1,NCOL)/10.0, 10.0/
DATA (XX(5,J),J=1,NCOL)/10.0, 15.0/
DATA (XX(6,J),J=1,NCOL)/20.0, 5.0/
|
IDO = 1
NROW = 0

CALL GCLAS (X, INDCL, MAXCL, NCLVAL, CLVAL, IDO=IDO, NROW=NROW, &
NMISS=NMISS)
IDO = 2
NROW = 1
DO 10 1I=1, NOBS
CALL SCOPY (NCOL, XX(I:,1l), LDXX, X(1:,1), LDX)
CALL GCLAS (X, INDCL, MAXCL, NCLVAL, CLVAL, IDO=IDO, NROW=NROW, &
NMISS=NMISS)
10 CONTINUE
IDO = 3
NROW = 0
CALL GCLAS (X, INDCL, MAXCL, NCLVAL, CLVAL, IDO=IDO, &
NROW=NROW, NMISS=NMISS)

I =1
RLABEL (1) = 'Variable CLVAL: "'
CLABEL (1) = 'None'
DO 20 J=1, NCLVAR
WRITE (RLABEL(1) (9:10),'(I2)') J
CALL WRRRL (' ', CLVAL(I:), RLABEL, CLABEL, 1, NCLVAL(J), 1)

I =TI + NCLVAL(J)
20 CONTINUE

RLABEL(1l) = 'NUMBER'
CLABEL (1) = 'Variable'
CLABEL(2) = 'NMISS'
CALL WRIRL ('%$/', NMISS, RLABEL, CLABEL)
END
Output

Variable 1 CLVAL: 10.00 20.00
Variable 2 CLVAL: 5.00 10.00 15.00

Variable NMISS
1 0
2 0

= R{nggmq\{q GCLAS Chapter 2: Regression 239



GRGLM

Generates regressors for a general linear model.

Required Arguments

X — NROW by NCOL matrix containing the data. (Input)

INDCL — Index vector of length NCLVAR containing the column numbers of X that are the classification
variables. (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken on by each classification vari-
able. (Input)
NCLVAL(T) is the number of distinct values for the I-th classification variable.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + ... + NCLVAL(NCLVAR) containing the values of the
classification variables. (Input)
The first NCLVAL(1) elements contain the values of the first classification variable; the next NCLVAL(2)
elements contain the values of the second classification variable; and so on. The last NCLVAL(NCLVAR)
elements contain the values of the last classification variable.

NVEF — Vector of length NEF containing the number of variables associated with each effect in the model.
(Input)

INDEF — Index vector of length NVEF(1) + NVEF(2) + ... + NVEF(NEF). (Input)
The first NVEF(1) elements give the column numbers of X for each variable in the first effect; the next
NVEF(2) elements give the column numbers for each variable in the second effect; and so on. The last
NVEF(NEF) elements give the column numbers for each variable in the last effect.

NREG — Number of columns in REG. (Output)
REG — NROW by NREG matrix containing the regressor variables generated from the matrix X. (Output, if
IDUMMY > 0)

Since, in general, NREG will not be known in advance, the user may need to invoke GRGLM first with
IDUMMY < 0, dimension REG, and then invoke GRGLM with IDUMMY > 0.

Optional Arguments

NROW — Number of rows of data in X. (Input)
Default: NROW = size (X,1).
NCOL — Number of columns in X. (Input)
Default: NCOL = size (X,2).
LDX — Leading dimension of X exactly as specified in the dimension statement in the calling program.
(Input)
Default: L.DX = size (X,1).
NCLVAR — Number of classification variables. (Input)
Default: NCLVAR = size (INDCL,1).
NEF — Number of effects (sources of variation) in the model. (Input)
Default: NEF = size (NVEF,1).
IDUMMY — Dummy variable option. (Input)
Default: IDUMMY = 1.
Some indicator variables are defined for the I-th class variable as follows: Let
J = NCLVAL(1l) + NCLVAL(2) + ... + NCLVAL(I - 1). NCLVAL(I) indicator variables are defined such
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thatfork =1, 2, ..., NCLVAL(T) the K-th indicator variable for observation number IOBS takes the
value 1.0 if X(IOBS, INDCL(I)) = CLVAL(J + K) and equals 0.0 otherwise. Dummy variables are gener-
ated from these indicator variables in one of the three following ways:

IDUMMY Method
-1,1 The NCLVAL(T) indicator variables are the dummy variables.
2,2 The first NCLVAL(I) - 1 indicator variables are the dummy variables.

The last indicator variable is omitted.

3,3 The &-th indicator variable minus the NCLVAL(TI)-th indicator vari-
able is the k-th dummy variable (k =1, 2, ..., NCLVAL(I) - 1).

If IDUMMY < 0, only NREG is computed; and X, CLVAL, and REG are not referenced.

LDREG — Leading dimension of REG exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDREG = size (REG,1).

NRMISS — Number of rows of REG containing NaN (not a number). (Output)
A row of REG contains NaN for a regressor when any of the variables involved in generation of the
regressor equals NaN or if a value of one of the classification variables in the model is not given by
CLVAL.

FORTRAN 90 Interface

Generic: CALL GRGLM (X, INDCL, NCLVAL, CLVAL, NVEF, INDEF, NREG, REG [, ...])
Specific: The specific interface names are S_GRGLM and D_GRGLM.

FORTRAN 77 Interface
Single: CALL GRGLM (NROW, NCOL, X, LDX, NCLVAR, INDCL, NCLVAL, CLVAL, NEF, NVEF, INDEF,
IDUMMY, NREG, REG, LDREG, NRMISS)
Double: The double precision name is DGRGLM.

Description

Routine GRGLM generates regressors for a general linear model from a data matrix. The data matrix can con-
tain classification variables as well as continuous variables.

Regressors for effects composed solely of continuous variables are generated as powers and crossproducts.
Consider a data matrix containing continuous variables as columns 3 and 4. The effect indices (3,3) (stored in
INDEF) generates a regressor whose i-th value is the square of the i-th value in column 3. The effect indices
(3,4) generates a regressor whose i-th value is the product of the i-th value in column 3 with the i-th value in
column 4.

Regressors for an effect (source of variation) composed of a single classification variable are generated using
indicator variables. Let the classification variable A take on values a4, g, ..., 4, (stored in CLVAL). From this

classification variable, GRGLM creates n indicator variables. Fork =1, 2, ..., n we have
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_ 1 ifA=ak

K~ 10 otherwise

For each classification variable, another set of variables is created from the indicator variables. We call these
new variables dummy variables. Dummy variables are generated from the indicator variables in one of three
manners:

1. the dummies are the n indicator variables

2. the dummies are the first n - 1 indicator variables

3 then - 1 dummies are defined in terms of the indicator variables so that for balanced data, the usual
summation restrictions are imposed on the regression coefficients

In particular, for IDUMMY = 1, the dummy variables are Ay =I; (k=1, 2, ..., n). For IDUMMY = 2, the dummy
variables are A, =1 (k=1,2, ..., n - 1). For IDUMMY = 3, the dummy variables are

Ar=I-1,(k=1,2,...,n - 1). The regressors generated for an effect composed of a single classification vari-
able are the associated dummy variables.

Let m; be the number of dummies generated for the j-th classification variable. Suppose there are two classifi-
cation variables A and B with dummies

Al’ Az, ey Aml and Bl’ Bz, ey Bm2

respectively. The regressors generated for an effect composed of two classification variables A and B are
A®B = <A1,A2, ,Am1> <Bl,Bz, ,Bm2>
= <A131,A132, oo s A1 By AsBy, AyBy, .. Ay, Ay By, Ay By, ,Amle2>

More generally, the regressors generated for an effect composed of several classification variables and several
continuous variables are given by the Kronecker products of variables, where the order of the variables is
specified in INDEF. Consider a data matrix containing classification variables in columns 1 and 2 and contin-
uous variables in columns 3 and 4. Label these four columns A, B, X1, and X,. The regressors generated by

the effect indices (1,2, 3, 3,4)is A ® B ® X1 X1 X».

Comments

Let the data matrix X = (A, B, X;) where A and B are classification variables, and X; is a continuous
variable. The model containing the effects A, B, AB, X, AXy, BX; and ABX is specified as follows:
NCLVAR = 2, INDCL = (1,2), NEF = 7, NVEF = (1, 1,2, 1, 2, 2, 3), and

INDEF =(1,2,1,2,3,1,3,2,3,1,2,3).

For this model, suppose NCLVAL(1) = 2, NCLVAL(2) = 3, and CLVAL= (1.0, 2.0, 1.0, 2.0, 3.0). Let

A1, By, By, and Bj be the associated indicator variables. Given below, for each IDUMMY option, are the
regressors in their order of appearance in REG.
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IDUMMY

REG

Aq, Ay, By, By, B3, A1By, A1By, A1B3, AxBy, ApBy, ArBg, X1, A1Xq, ApXq, B1Xy,
ByX4, B3X1, A1B1Xq, A1ByXy, A1B3Xq, ApB1Xq, ApByXq, AxB3Xyq

Al' B1, Bz, AlB1, Ale, Xl' A1X1, B1Xl' Ble, A131X1, Alexl

Ay - Ay, By - By, By - By, (A1 - Ap)(By - By), (A1 - Ap)(By - By), X1, (A1 - Ap)Xy,
(B1 - B3)Xq, (B - B3)Xy, (A1 - A9)(By - Bp)Xy, (Aq - Ap)(By - B3)Xy

Within a group of regressors corresponding to an interaction effect, the indicator variables composing
the regressors vary most rapidly for the last classification variable, vary next most rapidly for the next

to last classification variable, etc.

Example

In this example, regressors are generated for a two-way analysis-of-covariance model containing all the inter-
action terms. The model could be fitted by a subsequent invocation of routine RGIVN with INTCEP = 1. The

regressors generated with the option IDUMMY = 2 are for the model whose mean function is

M+ X+ B]+ Yij+ 6xi]-+ C ixi]-+ r]]-xl-]-+ 0 i]-xi]- i=1, 2,] =1,2,3

where 0 = B3=Y13 =Y21 =Y =Y23=Cp=N3=013=0,1 =05 =0,3=0.

USE GRGLM_INT
USE UMACH_INT
USE WRRRL_INT

IMPLICIT NONE

INTEGER LDREG, LDX, LINDEF, MAXCL, NCLVAR, NCOL, NDREG, NEF
NROW

PARAMETER (LINDEF=12, MAXCL=5, NCLVAR=2, NCOL=3, NDREG=20, &

NEF=7, NROW=6, LDREG=NROW, LDX=NROW)

INTEGER IDUMMY, INDCL (NCLVAR), INDEF(LINDEF), J, &

NCLVAL (NCLVAR) , NOUT, NREG, NRMISS, NVEF (NEF)

REAL CLVAL (MAXCL) , REG(LDREG,NDREG), X (LDX,NCOL)

CHARACTER CLABEL(12)*7, RLABEL(1l)*7

DATA INDCL/1, 2/, NCLVAL/2, 3/, CLVAL/1.0, 2.0, 1.0, 2.0, 3.0/
3

DATA NVEF/1, 1, 2, 1, 2, 2, 3/, INDEF/1, 2, 1, 2,
1, 2, 3/

DATA (X(1,J),J=1,NCOL)/1.0, 1.0, 1.11/

DATA (X(2,J),J=1,NCOL) /1.0, 2.0, 2.22/

DATA (X(3,J),Jd=1,NCOL)/1.0, 3.0, 3.33/

DATA (X(4,J),J=1,NCOL)/2.0, 1.0, 4.44/

DATA (X(5,J),Jd=1,NCOL)/2.0, 2.0, 5.55/

DATA (X(6,J),J=1,NCOL)/2.0, 3.0, 6.66/

DATA RLABEL/'NUMBER'/, CLABEL/' ', 'ALPHAl', 'BETAl', &
'BETA2', 'GAMMAll', 'GAMMAl2', 'DELTA', 'ZETAl', &
'"ETAl', 'ETA2', 'THETAll', 'THETAl2'/

, &
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IDUMMY = 2

CALL GRGLM (X, INDCL, NCLVAL, CLVAL, NVEF, INDEF, NREG, REG, &
IDUMMY=IDUMMY, NRMISS=NRMISS)

CALL UMACH (2, NOUT)

WRITE (NOUT,*) 'NREG = ', NREG, ' NRMISS = ', NRMISS

CALL WRRRL ('%/REG', REG, RLABEL, CLABEL, NROW, NREG, FMT='(F7.2)")

END
Output
NREG = 11 NRMISS 0

REG
ALPHA1 BETAL BETA2 GAMMAll GAMMAL2 DELTA ZETALl ETAL

1 1.00 1.00 0.00 1.00 0.00 1.11 1.11 1.11
2 1.00 0.00 1.00 0.00 1.00 2.22 2.22 0.00
3 1.00 0.00 0.00 0.00 0.00 3.33 3.33 0.00
4 0.00 1.00 0.00 0.00 0.00 4.44 0.00 4.44
5 0.00 0.00 1.00 0.00 0.00 5.55 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 6.66 0.00 0.00

ETA2 THETA1ll THETAl2
1 0.00 1.11 0.00
2 2.22 0.00 2.22
3 0.00 0.00 0.00
4 0.00 0.00 0.00
5 5.55 0.00 0.00
6 0.00 0.00 0.00
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RBEST

Selects the best multiple linear regression models.

Required Arguments
COV — NVAR by NVAR matrix containing the variance-covariance matrix or sum of squares and crossprod-

ucts matrix. (Input)
Only the upper triangle of COV is referenced. The last column of COV must correspond to the depen-

dent variable.
NOBS — Number of observations. NOBS must be greater than or equal to the number of variables plus 1

(NVAR + 1), when using Adjusted RZ or Mallows C, criteria

(ICRIT > 1). (Input)
ICOEFX — Index vector of length NTBEST + 1 containing the locations in COEF of the first row for each of

the best regressions. (Output)
Here, NTBEST is the total number of best regressions found and is given as follows:

ICRIT NTBEST

<0 -NBEST * ICRIT

1 NBEST * (NVAR - 1)
2 NBEST

3 NBEST

For1=1,2,..., NTBEST, rows ICOEFX(I), ICOEFX(I) + 1, ..., ICOEFX(I + 1) - 1 of COEF correspond

to the I-th regression.
COEF — ICOEFX(NTBEST + 1) - 1 by 5 matrix containing statistics relating to the regression coefficients of

the best models. (Output)
An upper bound on the number of rows in COEF is given as follows:

ICRIT Upper Bound on the Number of Rows in COEF
<0 -NBEST * ICRIT * (1 - ICRIT)/2

1 NBEST * (NVAR - 1) * NVAR/2

2 NBEST * (NVAR - 1)

3 NBEST * (NVAR - 1)

Each row corresponds to a coefficient for a particular regression. The regressions are in order of
increasing subset size. Within each subset size, the regressions are ordered so that the better regres-

sions appear first. The statistics in the columns are as follows:
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Col. Description

Variable number

Coefficient estimate

Estimated standard error of the estimate

t-statistic for the test that the coefficient is zero

G = W N =

p-value for the two-sided t test

(Inferences are conditional on the selected models.)

Optional Arguments
NVAR — Number of variables. (Input)
Default: NVAR = size (COV,2).
LDCOV — Leading dimension of COV exactly as specified in the dimension statement in the calling pro-
gram. (Input)
Default: LDCOV = size (COV,1).

ICRIT — Criterion option. (Input)
Default: ICRIT = 1.

ICRIT Criterion NSIZE
<0 R2 -ICRIT
1 Rz NVAR - 1
2 Adjusted R? NVAR - 1
3 Mallows Cp NVAR - 1

Subset sizes 1, 2, ..., NSIZE are examined.

NBEST — Number of best regressions to be found. (Input)
If the R? criterion is selected, the NBEST best regressions for each subset size examined are found. If the
adjusted R? or Mallows C, criterion is selected, the NBEST best overall regressions are found.
Default: NBEST = 1.

NGOOD — Maximum number of good regressions of each subset size to be saved in finding the best
regressions. (Input)
NGOOD must be greater than or equal to NBEST. Normally, NGOOD should be less than or equal to 10. It
need not ever be larger than the maximum number of subsets for any subset size. Computing time
required is inversely related to NGOOD.
Default: NGOOD = 10.

IPRINT — Printing option. (Input)
Default: TPRINT = 0.
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IPRINT Action
0 No printing is performed.

1 Printing is performed.

ICRITX — Index vector of length NSIZE + 1 containing the locations in CRIT of the first element for each
subset size. (Output)
(See argument ICRIT for a definition of NSIZE. ) For I =1, 2,